Binary Image Analysis

Binary image analysis
- consists of a set of image analysis operations that are used to produce or process binary images, usually images of 0’s and 1’s.
- foreground: pixels of interest in an image analysis task
 0 represents the background
 1 represents the foreground

00010010001000
00011110001000
00010010001000
00010010001000

Binary Image Analysis

- is used in a number of practical applications
 - part inspection
 - riveting
 - fish counting
 - document processing
What kinds of operations?

- Separate objects from background and from one another
- Aggregate pixels for each object
- Compute features for each object

Example: red blood cell image

- Many blood cells are separate objects
- Many touch – bad!
- Salt and pepper noise from thresholding
- How useable is this data?
Results of analysis

- 63 separate objects detected
- Single cells have area about 50
- Noise spots
- Gobs of cells

<table>
<thead>
<tr>
<th>Object</th>
<th>Area</th>
<th>Centroid</th>
<th>Bounding Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>383</td>
<td>(5.5, 20)</td>
<td>[1 2 1 39]</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>(5.5, 50)</td>
<td>[1 1 42 53]</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>(1.5, 57)</td>
<td>[1 2 55 60]</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(1, 02)</td>
<td>[1 1 62 62]</td>
</tr>
<tr>
<td>5</td>
<td>1048</td>
<td>(19, 76)</td>
<td>[1 4 35 100]</td>
</tr>
</tbody>
</table>

32 45 (43, 32) [60 46 28 35] cell
33 11 (45, 1e+02) [41 47 98 100] cell
34 32 (45, 07) [62 49 63 91] cell
35 84 (48, 53) [64 52 49 57] cell
60 44 (88, 78) [85 99 74 82] cell
61 1 (85, 84) [85 85 94 94] cell
62 0 (90, 2.5) [90 90 1 4] cell
63 1 (90, 6) [90 90 6 1] cell

Useful Operations

1. Thresholding a gray-tone image
2. Determining good thresholds
3. Connected components analysis
4. Binary mathematical morphology
5. All sorts of feature extractors (area, centroid, circularity, ...)
Thresholding

- Background is black
- Healthy cherry is bright
- Bruise is medium dark
- Histogram shows two cherry regions (black background has been removed)

Histogram-Directed Thresholding

How can we use a histogram to separate an image into 2 (or several) different regions?

Is there a single clear threshold? 2? 3?
Automatic Thresholding: Otsu’s Method

Assumption: the histogram is bimodal (two mode)

Method: find the threshold t that minimizes the weighted sum of within-group variances for the two groups that result from separating the gray tones at value t.

See text (at end of Chapter 3) for the recurrence relations; in practice, this operator works very well for true bimodal distributions and not too badly for others.

Thresholding Example
Connected Components Labeling

Once you have a binary image, you can identify and then analyze each connected set of pixels.

The connected components operation takes in a binary image and produces a labeled image in which each pixel has the integer label of either the background (0) or a component.

Methods for CC Analysis

1. Recursive Tracking (almost never used)
2. Parallel Growing (needs parallel hardware)
3. Row-by-Row (most common)
 - Classical Algorithm (see text)
 - Efficient Run-Length Algorithm (developed for speed in real industrial applications)
Equivalent Labels

Original Binary Image

```
0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1
0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1
0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
```

Equivalent Labels

The Labeling Process

```
0 0 0 1 1 1 1 0 0 0 2 2 2 2 2 0 0 0 3
0 0 0 1 1 1 1 0 0 0 2 2 2 2 2 0 0 0 3
0 0 0 1 1 1 1 1 0 0 2 2 2 2 2 2 2 2 3 3
0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```

$1 \equiv 2$

$1 \equiv 3$
Run-Length Data Structure

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Run-Length Algorithm

Procedure run_length_classical
{
 initialize Run-Length and Union-Find data structures
 count <- 0

 /* Pass 1 (by rows) */

 for each current row and its previous row
 {
 move pointer P along the runs of current row
 move pointer Q along the runs of previous row
 }
}
Case 1: No Overlap

|/////| |////|
|///| |///|

/* new label */
count <- count + 1
label(P) <- count
P <- P + 1

/* check Q's next run */
Q <- Q + 1

Case 2: Overlap

Subcase 1:
P's run has no label yet

// new label \\
count <- count + 1
label(P) <- count
P <- P + 1

Subcase 2:
P's run has a label that is different from Q's run

label(P) <- label(Q)
move pointer(s)
union(label(P),label(Q))
move pointer(s)
Pass 2 (by runs)

/* Relabel each run with the name of the equivalence class of its label */
For each run M
{
 label(M) <- find(label(M))
}

where union and find refer to the operations of the Union-Find data structure, which keeps track of sets of equivalent labels.

Labeling shown as Pseudo-Color

connected components of 1’s from thresholded image

connected components of cluster labels
Mathematical Morphology

Binary mathematical morphology consists of two basic operations

dilation and erosion

and several composite relations

closing and opening conditional dilation

Dilation

Dilation expands the connected sets of 1s of a binary image.

It can be used for

1. growing features

2. filling holes and gaps
Erosion

Erosion shrinks the connected sets of 1s of a binary image.

It can be used for

1. shrinking features

2. Removing bridges, branches and small protrusions

Structuring Elements

A structuring element is a shape mask used in the basic morphological operations.

They can be any shape and size that is digitally representable, and each has an origin.
Dilation with Structuring Elements

The arguments to dilation and erosion are

1. A binary image \(B \)
2. A structuring element \(S \)

\[
\text{dilate}(B, S) \text{ takes binary image } B, \text{ places the origin of structuring element } S \text{ over each 1-pixel, and ORs the structuring element } S \text{ into the output image at the corresponding position.}
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\quad \begin{array}{c}
1 \\
1 \\
1 \\
\end{array}
\quad \text{dilate}
\quad \begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

Erosion with Structuring Elements

\[
\text{erode}(B, S) \text{ takes a binary image } B, \text{ places the origin of structuring element } S \text{ over every pixel position, and ORs a binary 1 into that position of the output image only if every position of } S \text{ (with a 1) covers a 1 in } B.
\]

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\quad \begin{array}{c}
1 \\
1 \\
1 \\
\end{array}
\quad \text{erode}
\quad \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]
Example 1 to Try

```
0 0 1 0 0 1 0 0
0 0 1 1 1 1 0
1 1 1 1 1 0 0
1 1 1 1 1 1 1
0 0 1 1 1 0 0
0 0 1 1 1 1 0
0 0 1 1 1 1 0
```

```
1 1 1
1 1
1 1
```

```
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
```

```
1 1 1
1 1
1 1
```

```
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
```

B

S

erode

dilate with same structuring element
Example 1 to Try

First erode and then dilate with the same S.

Example 2 to Try
Opening and Closing

- **Closing** is the compound operation of dilation followed by erosion (with the same structuring element)

- **Opening** is the compound operation of erosion followed by dilation (with the same structuring element)

Gear Tooth Inspection

- Original binary image
- Detected defects
- How did they do it?
Original image B

$B_1 = B \ominus \text{hole}_\text{ring}$

$B_2 = B_1 \oplus \text{hole}_\text{mask}$

$B_3 = B \lor B_2$

$B_7: \text{Sample ring}$

$B_8 = B \land B_7$

$B_9 = B_8 \oplus \text{tip}_\text{spacing}$

RESULT = ($(B_7 \ominus B_9) \ominus \text{defect}_\text{cue}) \lor B_9$
Region Properties

Properties of the regions can be used to recognize objects.

- geometric properties (Ch 3)
- gray-tone properties
- color properties
- texture properties
- shape properties (a few in Ch 3)
- motion properties
- relationship properties (1 in Ch 3)

Geometric and Shape Properties

- area
- centroid
- perimeter
- perimeter length
- circularity
- elongation
- mean and standard deviation of radial distance
- bounding box
- extremal axis length from bounding box
- second order moments (row, column, mixed)
- lengths and orientations of axes of best-fit ellipse

Which are statistical? Which are structural?
A region adjacency graph (RAG) is a graph in which each node represents a region of the image and an edge connects two nodes if the regions are adjacent.

This is jumping ahead a little bit.

We’ll consider this further for structural image analysis.