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Basic Probability

One of the basic principles of probability theory, the chain rule, will allow us
to derive most of the background material in Bayesian analysis. The chain rule
allows us to take joint probability, P (a, b), and write it as the product of the
conditional probability, P (a|b) and the marginal probability, P (b) as follows

P (a, b) = P (a|b)P (b)

The selection of b as the marginal probability is arbitrary, so

P (a, b) = P (b|a)P (a)

is also true. From these two facts, we can show Bayes rule as follows

P (b|a) =
P (a|b)P (b)

P (a)

Typically, this is presented in different terminology, as follows

P (h|d) =
P (d|h)P (h)

P (d)

where, P (h) is the probability of hypothesis h being true before the data is
seen or the belief that the agent holds before seeing the data, as known as the
prior probability. It naturally follows that P (d|h) is the probability of the data
being d given the agent knows the hypothesis h, also know as the likelihood.
By combining what the agent believes before seeing the data (the prior) with
what the agent saw from the data (the likelihood), we can get the posterior

probability, P (h|d).
The denominator of the right side of the Bayes rule often is dropped because

it is a normalizing factor. To see how this is true, we can expand P (d) into

P (d) =
∑

h

P (d, h)

1Most of the material in this section is from Technical Introduction: A Primer on Proba-

bilistic Inference by Griffiths and Yuille
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which just results from summing over all hypothesises, h, just as before in
marginalization, now we can expand that joint probability just as before into

P (d, h) = P (d|h′)P (h′)

which gives us the final form of Bayes’ formula

P (h|d) =
P (d|h)P (h)

∑

h′ P (d|h′)P (h′)

which is simple to see as a normalizing constant, because it divides by the
sum over all possible hypotheses.

Two Hypotheses

If you had just two hypotheses, the hypothesis space would just be two pos-
sibilities, h1 and h2, with two priors, P (h1) and P (h2). We can compare the
posteriors directly of these two likelihoods and priors, with posterior odds as
follows

P (h1|d)

P (h2|d)
=

P (d|h1)

P (d|h2)

P (h1)

P (h2)

The first part of the above ratio is called the likelihood ratio and the second
part is called the prior odds. If we take the log of both sides, it is unsurprisingly
called log posterior odds

log
P (h1|d)

P (h2|d)
= log

P (d|h1)

P (d|h2)
+ log

P (h1)

P (h2)

This also illuminates how to think about one hypothesis is favored over
another. It is simply a combination of prior beliefs plus contribution of the
data.

Example

Lets assume that we have a coin that has a probability θ of turning up heads. We
would like compute the probability of the data being described by a particular
θ. For example,

P (d|θ) = θNH (1 − θ)NT

is the likelihood (probability) that the data (in this case, counts of heads
and tails) was generated by θ. This is an example of a binomial distribution.

Statistics could stop here and compute the maximum likelihood estimate

(MLE) by estimating the fixed parameter of this stochastic model. We will now
go through the motions of computing the MLE for this model.

P (d|θ) = θNH (1 − θ)NT

logP (d|θ) = log θNH + log(1 − θ)NT

logP (d|θ) = NH log θ + NT log(1 − θ)
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d

dx
logP (d|θ) =

NH

θ
+

−NT

1 − θ

0 =
NH

θ
+

−NT

1 − θ

NH

θ
=

NT

1 − θ

NH

NT

=
θ

1 − θ

NT

NH

=
1 − θ

θ

NT

NH

=
1

θ
− 1

NT + NH

NH

=
1

θ

θ̂ =
NH

NT + NH

so this demonstrates that the maximum-likelihood estimate is quite similar
to what we would expect, but there are issues.

Bayes and MAP

In the previous example, just flipping one head would give us a MLE of θ̂ = 1
meaning we would predict there is zero possibility of the coin coming up tails.
This may be reasonable for ten heads or even 30 heads, but not just one. This
MLE also does not include any other information we have about coins (mainly
by design). So, now we attack these problems using the Bayesian approach to
this problem.

Let’s assume that the parameter, θ, is a random variable. Then, we can
apply Bayes theorem

P (θ|d) =
P (d|θ)P (θ)

∫ 1

0
P (d|θ′)P (θ′)dθ′

The subtle difference between this equation and earlier equations is that we
just gained infinitely many different hypotheses in the form of θ. One conse-
quence of this is the sum in the denominator has become an integral.

From this new Bayesian approach to the problem, we can take two ap-
proaches to choosing the best estimate for our parameter. The first is to choose
the mode of the posterior. This is typically referred to as the maximum a pos-

terior (MAP) estimate. The second way is to take the posterior mean, which is
computed exactly the way an expectation is taken

θ̂ =

∫ 1

0

θP (θ|d)dθ
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This brings the natural question of what to make the prior. One initial
thought would be to use the uniform distribution for P (θ) and in fact this was
analyzed long ago.

Conjugate Priors

Obviously manipulating some of these distributions analytically will be difficult
and performing certain integrations will be impossible. One of the ways to
mitigate this effect is by way of conjugate priors. Depending on the likelihood
distribution, for our example it was binomial, the prior can be choosen, so that
posterior is of the same form as the prior. For example, the conjugate prior for
the binomial distribution is the beta distribution. So, if your likelihood is of the
form

P (d|θ) =

(

n

k

)

θk(1 − θ)n−k

and your prior is of the form

P (θ) =
1

B(α, β)
θα−1(1 − θ)β−1

then your posterior will be of the form

P (θ|d) =
1

B(α + k, β + n − k)
θα+k−1(1 − θ)β+n−k−1

Gaussian Process Regression 2

We are going to look at one derivation of Gaussian process regression, the weight
space view. There is another more popular and more powerful view called the
function space view, which is slightly more conceptually different.

Lets assume that you start with the standard linear regression model with
some Gaussian noise.

f(x) = xT w

y = f(x) + ǫ

where ǫ is the noise parameter that is Gaussian distributed

ǫ ∼ N(0, σ2)

This gives us a likelihood distribution of the observations given the param-
eters, which we can assume each data point is independent, so we can write the
likelihood as follows

P (y|X, w) = Πp(yi|xi, w)

2Material in this section was derived mainly from Gaussian Processes for Machine Learning

by C. Rasmussen and C. Williams
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where each individual distribution is Gaussian, which can be written as
follows

1√
2πσ

e−
(yi−xT

i
w)2

2σ2

With a little algebra and Gaussian knowledge, we can rewrite the likelihood
as

p(y|X, w) = N(XT w, σ2I)

Now, we have a parameter,w, that we need to express a prior for. We happen
to know that Gaussians are self-conjugate, so we decide to pick a Gaussian prior
over our parameter,w

w ∼ N(0, Σp)

We can now write the posterior probability as

p(w|X, y) = p(y|X, w)p(w)

we can condition on the data, X , everywhere, because the data is by defini-
tion independent of our prior. If you go through the algebric motions, we can
find that the posterior is Gaussian (of course) of the form

p(w|X, y) ∼ N(
1

σ2
A−1Xy, A−1)

where A = σ−2XXT + Σ−1
p

Another property of Gaussian distributions is that the mean is also the MAP
estimate (or mode).
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