Problem: Show the following statement: For every $L \in NP$ there is a LOGSPACE machine M and a polynomial p such that M takes two inputs x and y, ($|y| < p(|x|)$ and has the following connection with L:

For every $x \in \{0, 1\}^*$:

- If $x \in L$ then there exists a y ($|y| < p(|x|)$) such that $M(x, y) = 1$;
- If $x \notin L$ then for every y ($|y| < p(|x|)$ it holds $M(x, y) = 0$;

Notes: This problem is basically the same as 4.7 from the book. You can request a hint from the TA with no strings attached (except binary).