Hierarchical Models for 3D Visual Inference

Atul Kanaujia, *Rutgers University*
Cristian Sminchisescu, *TTI- Chicago*
Dimitris Metaxas, *Rutgers University*
3D Human Pose Inference `in the Wild’

Towards automatic monocular methods

• Background clutter
• Geometric transformations
 – Scale and viewpoint change
• Illumination changes
• Fast motions
• Occlusion / self-occlusion
• Variability in the human body proportions
Basic Approach

• Train structured model to predict 3D human poses given image descriptor inputs
 - Multi-valued predictor necessary

• Training using realistic CG impostor animated using human motion capture, and placed on real backgrounds
Problems

- Lack of typical training data (Vicon, quasi-real)
- Image descriptors are unstable \(w.r.t. \) to geometric deformations and background clutter
This Talk

• Learning image descriptors
 – Multi-level / coarse-to-fine encodings stable w.r.t. deformation and misalignment in the training set
 – Learning metrics for noise suppression / clutter removal

• Semi-supervised multi-valued prediction
What is wrong with existing features?

- Global histograms (bag of features) are robust to local deformation but sensitive to background clutter.

- Fine-scale, regular grid descriptors can be robust to clutter but sensitive to training set misalignments / local deformations.
Hierarchical Descriptor

- Multilevel coarse-to-fine encoding based on either multi-level histograms or successive object part matching and max pooling operations (e.g. HMAX)

SIFT Descriptor

Independent Vector Quantization in each spatial region

Concatenate to Descriptor
Hierarchical Features

HMAX Features

\(\Omega = \text{MAX} \)

S1

16 Gabor Filter response

C1

\(\Omega \)

S2

C2

Ω

Select Patches / Object Parts to match against results from previous layer

Encoding
Dealing with Background Clutter

- Multi-level encodings still affected by background
- Need to suppress noise
 - Eliminate features corresponding to irrelevant, fluctuating image regions
- Feature selection based on e.g. sparse linear regression tends to be ineffective for descriptors globally perturbed by clutter (e.g. global histograms)
Distance Metric Learning

- Learn a Mahalanobis distance that maximizes similarity within chunklets = sets of images of people in similar poses, but differently proportioned and placed on different backgrounds
 - Relevant Component Analysis (Hillel et. al. 2003)
 - Alternatively, maximize correlation between pairs
Background Clutter Removal

Clean | Quasi-real (QReal) | Real

- The distance between the learned multilevel descriptors computed on different backgrounds is diminished.
Canonical Correlation Analysis

- Learn bases that maximize correlation between pairs of images of people on clean and cluttered backgrounds.

![Graphs showing projection on canonical correlations.](image-url)
This Talk ... Flexible Training

- Multi-level / coarse-to-fine Image Descriptors stable \(w.r.t. \) image deformation and misalignment in training set.
- Learning metrics in the space of descriptors for noise suppression/ clutter removal
- Semi-Supervised multi-valued prediction
Semi-supervised Multi-valued Prediction

- Manifold Assumption
- Expert Ranking Assumption (mixture of experts)
 - If two inputs are closed in the intrinsic image geometry (e.g. graph Laplacian), their outputs should be smooth only if predicted by the same expert
Experiments

• Multi-level encodings
 – 5 Hierarchical Features, 5 Scale levels, 3 Coarse-to-Fine levels
 – ~1500D image descriptor

• Dataset of human poses
 – 56D human joint angle state vector
 – 5 Motions obtained with motion capture
 • Side walk, Pantomime, Bending Pickup, Dancing and Running
 – Multi-view walking with unlabelled images from INRIA Person Dataset
 – 3247 x 3 images, 1000 unlabeled images

• Multi-valued predictor with 5 experts
Prediction Accuracy
Multilevel vs. Global Descriptors

- Multilevel / hierarchical descriptors performs significantly better than global histograms or fine grids of local descriptors
Prediction Accuracy
Before / after Metric Learning

- Metric learning improves global histogram descriptors
- CCA improves HMAX
Run Lola Run Movie
Automatic 3D Pose Reconstruction

Notice: camera motion, occlusion (trees), self-occlusion, fast motions
Run Lola Run Movie
3D Pose Reconstruction

Notice scale changes, camera motions
Conclusions and Perspectives

• Learning multilevel image encodings for 3D inference
 – Stable w.r.t. to local deformation and misalignment in the training set
 – Metric learning for background clutter removal
• Flexible training based on semi-supervised multi-valued manifold regularization methods

• Ongoing work
 – Jointly learning both the image features and the predictor – can fit well within a hierarchical mixture of experts models
 – Scaling to large datasets
Semi-Supervised Learning

- Test on walking poses with unlabelled images from INRIA person database.
- Number of unlabelled data improves the prediction accuracy initially.
Thank You