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Abstract

Thompson sampling is one of oldest heuristic to address the exploration / ex-
ploitation trade-off, but it is surprisingly unpopular in the literature. We present
here some empirical results using Thompson sampling on simulated and real data,
and show that it is highly competitive. And since this heuristic is very easy to
implement, we argue that it should be part of the standard baselines to compare
against.

1 Introduction

Various algorithms have been proposed to solve exploration / exploitation or bandit problems. One
of the most popular is Upper Confidence Bound or UCB [7, 3], for which strong theoretical guar-
antees on the regret can be proved. Another representative is the Bayes-optimal approach of Gittins
[4] that directly maximizes expected cumulative payoffs with respect to a given prior distribution.
A less known family of algorithms is the so-called probability matching. The idea of this heuristic
is old and dates back to [16]. This is the reason why this scheme is also referred to as Thompson
sampling.

The idea of Thompson sampling is to randomly draw each arm according to its probability of being
optimal. In contrast to a full Bayesian method like Gittins index, one can often implement Thompson
sampling efficiently. Recent results using Thompson sampling seem promising [5, 6, 14, 12]. The
reason why it is not very popular might be because of its lack of theoretical analysis. Only two
papers have tried to provide such analysis, but they were only able to prove asymptotic convergence
[6, 11].

In this work, we present some empirical results, first on a simulated problem and then on two real-
world ones: display advertisement selection and news article recommendation. In all cases, despite
its simplicity, Thompson sampling achieves state-of-the-art results, and in some cases significantly
outperforms other alternatives like UCB. The findings suggest the necessity to include Thompson
sampling as part of the standard baselines to compare against, and to develop finite-time regret bound
for this empirically successful algorithm.

2 Algorithm

The contextual bandit setting is as follows. At each round we have a context x (optional) and a set
of actions A. After choosing an action a ∈ A, we observe a reward r. The goal is to find a policy
that selects actions such that the cumulative reward is as large as possible.

Thompson sampling is best understood in a Bayesian setting as follows. The set of past observations
D is made of triplets (xi, ai, ri) and are modeled using a parametric likelihood function P (r|a, x, θ)
depending on some parameters θ. Given some prior distribution P (θ) on these parameters, the pos-
terior distribution of these parameters is given by the Bayes rule, P (θ|D) ∝

∏
P (ri|ai, xi, θ)P (θ).
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In the realizable case, the reward is a stochastic function of the action, context and the unknown,
true parameter θ∗. Ideally, we would like to choose the action maximizing the expected reward,
maxa E(r|a, x, θ∗).
Of course, θ∗ is unknown. If we are just interested in maximizing the immediate reward (exploita-
tion), then one should choose the action that maximizes E(r|a, x) =

∫
E(r|a, x, θ)P (θ|D)dθ.

But in an exploration / exploitation setting, the probability matching heuristic consists in randomly
selecting an action a according to its probability of being optimal. That is, action a is chosen with
probability ∫

I
[
E(r|a, x, θ) = max

a′
E(r|a′, x, θ)

]
P (θ|D)dθ,

where I is the indicator function. Note that the integral does not have to be computed explicitly: it
suffices to draw a random parameter θ at each round as explained in Algorithm 1. Implementation
of the algorithm is thus efficient and straightforward in most applications.

Algorithm 1 Thompson sampling
D = ∅
for t = 1, . . . , T do

Receive context xt
Draw θt according to P (θ|D)
Select at = argmaxa Er(r|xt, a, θt)
Observe reward rt
D = D ∪ (xt, at, rt)

end for

In the standard K-armed Bernoulli bandit, each action corresponds to the choice of an arm. The
reward of the i-th arm follows a Bernoulli distribution with mean θ∗i . It is standard to model the mean
reward of each arm using a Beta distribution since it is the conjugate distribution of the binomial
distribution. The instantiation of Thompson sampling for the Bernoulli bandit is given in algorithm
2. It is straightforward to adapt the algorithm to the case where different arms use different Beta
distributions as their priors.

Algorithm 2 Thompson sampling for the Bernoulli bandit
Require: α, β prior parameters of a Beta distribution
Si = 0, Fi = 0, ∀i. {Success and failure counters}
for t = 1, . . . , T do

for i = 1, . . . ,K do
Draw θi according to Beta(Si + α, Fi + β).

end for
Draw arm ı̂ = argmaxi θi and observe reward r
if r = 1 then
Sı̂ = Sı̂ + 1

else
Fı̂ = Fı̂ + 1

end if
end for

3 Simulations

We present some simulation results with Thompson sampling for the Bernoulli bandit problem and
compare them to the UCB algorithm. The reward probability of each of the K arms is modeled
by a Beta distribution which is updated after an arm is selected (see algorithm 2). The initial prior
distribution is Beta(1,1).

There are various variants of the UCB algorithm, but they all have in common that the confidence
parameter should increase over time. Specifically, we chose the arm for which the following upper
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confidence bound [8, page 278] is maximum:

k

m
+

√
2 km log 1

δ

m
+

2 log 1
δ

m
, δ =

√
1

t
, (1)

where m is the number of times the arm has been selected and k its total reward. This is a tight
upper confidence bound derived from Chernoff’s bound.

In this simulation, the best arm has a reward probability of 0.5 and the K − 1 other arms have a
probability of 0.5− ε. In order to speed up the computations, the parameters are only updated after
every 100 iterations. The regret as a function of T for various settings is plotted in figure 1. An
asymptotic lower bound has been established in [7] for the regret of a bandit algorithm:

R(T ) ≥ log(T )

[
K∑
i=1

p∗ − pi
D(pi||p∗)

+ o(1)

]
, (2)

where pi is the reward probability of the i-th arm, p∗ = max pi and D is the Kullback-Leibler
divergence. This lower bound is logarithmic in T with a constant depending on the pi values. The
plots in figure 1 show that the regrets are indeed logarithmic in T (the linear trend on the right hand
side) and it turns out that the observed constants (slope of the lines) are close to the optimal constants
given by the lower bound (2). Note that the offset of the red curve is irrelevant because of the o(1)
term in the lower bound (2). In fact, the red curves were shifted such that they pass through the
lower left-hand corner of the plot.
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Figure 1: Cumulative regret for K ∈ {10, 100} and ε ∈ {0.02, 0.1}. The plots are averaged over
100 repetitions. The red line is the lower bound (2) shifted such that it goes through the origin.

As with any Bayesian algorithm, one can wonder about the robustness of Thompson sampling to
prior mismatch. The results in figure 1 include already some prior mismatch because the Beta prior
with parameters (1,1) has a large variance while the true probabilities were selected to be close to
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Figure 2: Regret of optimistic Thompson sampling [11] in the same setting as the lower left plot of
figure 1.

0.5. We have also done some other simulations (not shown) where there is a mismatch in the prior
mean. In particular, when the reward probability of the best arm is 0.1 and the 9 others have a
probability of 0.08, Thompson sampling—with the same prior as before—is still better than UCB
and is still asymptotically optimal.

We can thus conclude that in these simulations, Thompson sampling is asymptotically optimal and
achieves a smaller regret than the popular UCB algorithm. It is important to note that for UCB,
the confidence bound (1) is tight; we have tried some other confidence bounds, including the one
originally proposed in [3], but they resulted in larger regrets.

Optimistic Thompson sampling The intuition behind UCB and Thompson sampling is that, for
the purpose of exploration, it is beneficial to boost the predictions of actions for which we are uncer-
tain. But Thompson sampling modifies the predictions in both directions and there is apparently no
benefit in decreasing a prediction. This observation led to a recently proposed algorithm called Op-
timistic Bayesian sampling [11] in which the modified score is never smaller than the mean. More
precisely, in algorithm 1, Er(r|xt, a, θt) is replaced by max(Er(r|xt, a, θt),Er,θ|D(r|xt, a, θ)).
Simulations in [12] showed some gains using this optimistic version of Thompson sampling. We
compared in figure 2 the two versions of Thompson sampling in the case K = 10 and ε = 0.02.
Optimistic Thompson sampling achieves a slightly better regret, but the gain is marginal. A pos-
sible explanation is that when the number of arms is large, it is likely that, in standard Thompson
sampling, the selected arm has a already a boosted score.

Posterior reshaping Thompson sampling is a heuristic advocating to draw samples from the pos-
terior, but one might consider changing that heuristic to draw samples from a modified distribution.
In particular, sharpening the posterior would have the effect of increasing exploitation while widen-
ing it would favor exploration. In our simulations, the posterior is a Beta distribution with parame-
ters a and b, and we have tried to change it to parameters a/α, b/α. Doing so does not change the
posterior mean, but multiply its variance by a factor close to α2.

Figure 3 shows the average and distribution of regret for different values of α. Values of α smaller
than 1 decrease the amount of exploration and often result in lower regret. But the price to pay is a
higher variance: in some runs, the regret is very large. The average regret is asymptotically not as
good as with α = 1, but tends to be better in the non-asymptotic regime.

Impact of delay In a real world system, the feedback is typically not processed immediately
because of various runtime constraints. Instead it usually arrives in batches over a certain period of
time. We now try to quantify the impact of this delay by doing some simulations that mimic the
problem of news articles recommendation [9] that will be described in section 5.
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Figure 3: Thompson sampling where the parameters of the Beta posterior distribution have been
divided by α. The setting is the same as in the lower left plot of figure 1 (1000 repetitions). Left:
average regret as a function of T . Right: distribution of the regret at T = 107. Since the outliers can
take extreme values, those above 6000 are compressed at the top of the figure.

Table 1: Influence of the delay: regret when the feedback is provided every δ steps.

δ 1 3 10 32 100 316 1000
UCB 24,145 24,695 25,662 28,148 37,141 77,687 226,220
TS 9,105 9,199 9,049 9,451 11,550 21,594 59,256
Ratio 2.65 2.68 2.84 2.98 3.22 3.60 3.82

We consider a dynamic set of 10 items. At a given time, with probability 10−3 one of the item retires
and is replaced by a new one. The true reward probability of a given item is drawn according to a
Beta(4,4) distribution. The feedback is received only every δ time units. Table 1 shows the average
regret (over 100 repetitions) of Thompson sampling and UCB at T = 106. An interesting quantity
in this simulation is the relative regret of UCB and Thompson sampling. It appears that Thompson
sampling is more robust than UCB when the delay is long. Thompson sampling alleviates the
influence of delayed feedback by randomizing over actions; on the other hand, UCB is deterministic
and suffers a larger regret in case of a sub-optimal choice.

4 Display Advertising

We now consider an online advertising application. Given a user visiting a publisher page, the
problem is to select the best advertisement for that user. A key element in this matching problem is
the click-through rate (CTR) estimation: what is the probability that a given ad will be clicked given
some context (user, page visited)? Indeed, in a cost-per-click (CPC) campaign, the advertiser only
pays when his ad gets clicked. This is the reason why it is important to select ads with high CTRs.
There is of course a fundamental exploration / exploitation dilemma here: in order to learn the CTR
of an ad, it needs to be displayed, leading to a potential loss of short-term revenue. More details on
on display advertising and the data used for modeling can be found in [1].

In this paper, we consider standard regularized logistic regression for predicting CTR. There are
several features representing the user, page, ad, as well as conjunctions of these features. Some
of the features include identifiers of the ad, advertiser, publisher and visited page. These features
are hashed [17] and each training sample ends up being represented as sparse binary vector of
dimension 224.

In our model, the posterior distribution on the weights is approximated by a Gaussian distribution
with diagonal covariance matrix. As in the Laplace approximation, the mean of this distribution is
the mode of the posterior and the inverse variance of each weight is given by the curvature. The use
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of this convenient approximation of the posterior is twofold. It first serves as a prior on the weights
to update the model when a new batch of training data becomes available, as described in algorithm
3. And it is also the distribution used in Thompson sampling.

Algorithm 3 Regularized logistic regression with batch updates
Require: Regularization parameter λ > 0.
mi = 0, qi = λ. {Each weight wi has an independent prior N (mi, q

−1
i )}

for t = 1, . . . , T do
Get a new batch of training data (xj , yj), j = 1, . . . , n.

Find w as the minimizer of:
1

2

d∑
i=1

qi(wi −mi)
2 +

n∑
j=1

log(1 + exp(−yjw>xj)).

mi = wi

qi = qi +

n∑
j=1

x2ijpj(1− pj), pj = (1 + exp(−w>xj))−1 {Laplace approximation}

end for

Evaluating an explore / exploit policy is difficult because we typically do not know the reward of an
action that was not chosen. A possible solution, as we shall see in section 5, is to use a replayer in
which previous, randomized exploration data can be used to produce an unbiased offline estimator
of the new policy [10]. Unfortunately, their approach cannot be used in our case here because
it reduces the effective data size substantially when the number of arms K is large, yielding too
high variance in the evaluation results. [15] studies another promising approach using the idea of
importance weighting, but the method applies only when the policy is static, which is not the case
for online bandit algorithms that constantly adapt to its history.

For the sake of simplicity, therefore, we considered in this section a simulated environment. More
precisely, the context and the ads are real, but the clicks are simulated using a weight vector w∗.
This weight vector could have been chosen arbitrarily, but it was in fact a perturbed version of some
weight vector learned from real clicks. The input feature vectors x are thus as in the real world set-
ting, but the clicks are artificially generated with probability P (y = 1|x) = (1 + exp(−w∗>x))−1.

About 13,000 contexts, representing a small random subset of the total traffic, are presented every
hour to the policy which has to choose an ad among a set of eligible ads. The number of eligible ads
for each context depends on numerous constraints set by the advertiser and the publisher. It varies
between 5,910 and 1 with a mean of 1,364 and a median of 514 (over a set of 66,373 ads). Note that
in this experiment, the number of eligible ads is smaller than what we would observe in live traffic
because we restricted the set of advertisers.

The model is updated every hour as described in algorithm 3. A feature vector is constructed for
every (context, ad) pair and the policy decides which ad to show. A click for that ad is then generated
with probability (1 + exp(−w∗>x))−1. This labeled training sample is then used at the end of the
hour to update the model. The total number of clicks received during this one hour period is the
reward. But in order to eliminate unnecessary variance in the estimation, we instead computed the
expectation of that number since the click probabilities are known.

Several explore / exploit strategies are compared; they only differ in the way the ads are selected; all
the rest, including the model updates, is identical as described in algorithm 3. These strategies are:

Thompson sampling This is algorithm 1 where each weight is drawn independently according to
its Gaussian posterior approximation N (mi, q

−1
i ) (see algorithm 3). As in section 3, we

also consider a variant in which the standard deviations q−1/2i are first multiplied by a factor
α ∈ {0.25, 0.5}. This favors exploitation over exploration.

LinUCB This is an extension of the UCB algorithm to the parametric case [9]. It selects the
ad based on mean and standard deviation. It also has a factor α to control the ex-
ploration / exploitation trade-off. More precisely, LinUCB selects the ad for which∑d
i=1mixi + α

√∑d
i=1 q

−1
i x2i is maximum.

Exploit-only Select the ad with the highest mean.
Random Select the ad uniformly at random.
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Table 2: CTR regrets on the display advertising data.
Method TS LinUCB ε-greedy Exploit Random

Parameter 0.25 0.5 1 0.5 1 2 0.005 0.01 0.02
Regret (%) 4.45 3.72 3.81 4.99 4.22 4.14 5.05 4.98 5.22 5.00 31.95
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Figure 4: CTR regret over the 4 days test period for 3 algorithms: Thompson sampling with α = 0.5,
LinUCB with α = 2, Exploit-only. The regret in the first hour is large, around 0.3, because the
algorithms predict randomly (no initial model provided).

ε-greedy Mix between exploitation and random: with ε probability, select a random ad; otherwise,
select the one with the highest mean.

Results A preliminary result is about the quality of the variance prediction. The diagonal Gaussian
approximation of the posterior does not seem to harm the variance predictions. In particular, they
are very well calibrated: when constructing a 95% confidence interval for CTR, the true CTR is in
this interval 95.1% of the time.

The regrets of the different explore / exploit strategies can be found in table 2. Thompson sampling
achieves the best regret and interestingly the modified version with α = 0.5 gives slightly better
results than the standard version (α = 1). This confirms the results of the previous section (figure 3)
where α < 1 yielded better regrets in the non-asymptotic regime.

Exploit-only does pretty well, at least compared to random selection. This seems at first a bit sur-
prising given that the system has no prior knowledge about the CTRs. A possible explanation is that
the change in context induces some exploration, as noted in [13]. Also, the fact that exploit-only
is so much better than random might explain why ε-greedy does not beat it: whenever this strat-
egy chooses a random action, it suffers a large regret in average which is not compensated by its
exploration benefit.

Finally figure 4 shows the regret of three algorithms across time. As expected, the regret has a
decreasing trend over time.

5 News Article Recommendation

In this section, we consider another application of Thompson sampling in personalized news article
recommendation on Yahoo! front page [2, 9]. Each time a user visits the portal, a news article out
of a small pool of hand-picked candidates is recommended. The candidate pool is dynamic: old
articles may retire and new articles may be added in. The average size of the pool is around 20.
The goal is to choose the most interesting article to users, or formally, maximize the total number of
clicks on the recommended articles. In this case, we treat articles as arms, and define the payoff to
be 1 if the article is clicked on and 0 otherwise. Therefore, the average per-trial payoff of a policy is
its overall CTR.
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Figure 5: Normalized CTRs of various algorithm on the news article recommendation data with dif-
ferent update delays: {10, 30, 60} minutes. The normalization is with respect to a random baseline.

Each user was associated with a binary raw feature vector of over 1000 dimension, which indicates
information of the user like age, gender, geographical location, behavioral targeting, etc. These
features are typically sparse, so using them directly makes learning more difficult and is compu-
tationally expensive. One can find lower dimension feature subspace by, say, following previous
practice [9]. Here, we adopted the simpler principal component analysis (PCA), which did not ap-
pear to affect the bandit algorithms much in our experience. In particular, we performed a PCA and
projected the raw user feature onto the first 20 principal components. Finally, a constant feature 1 is
appended, so that the final user feature contains 21 components. The constant feature serves as the
bias term in the CTR model described next.

We use logistic regression, as in Algorithm 3, to model article CTRs: given a user feature vector
x ∈ <21, the probability of click on an article a is (1 + exp(−x>wa))

−1 for some weight vector
wa ∈ <21 to be learned. The same parameter algorithm and exploration heuristics are applied as in
the previous section. Note that we have a different weight vector for each article, which is affordable
as the numbers of articles and features are both small. Furthermore, given the size of data, we have
not found article features to be helpful. Indeed, it is shown in our previous work [9, Figure 5] that
article features are helpful in this domain only when data are highly sparse.

Given the small size of candidate pool, we adopt the unbiased offline evaluation method of [10]
to compare various bandit algorithms. In particular, we collected randomized serving events for
a random fraction of user visits; in other words, these random users were recommended an article
chosen uniformly from the candidate pool. From 7 days in June 2009, over 34M randomized serving
events were obtained.

As in section 3, we varied the update delay to study how various algorithms degrade. Three values
were tried: 10, 30, and 60 minutes. Figure 5 summarizes the overall CTRs of four families of
algorithm together with the exploit-only baseline. As in the previous section, (optimistic) Thompson
sampling appears competitive across all delays. While the deterministic UCB works well with short
delay, its performance drops significantly as the delay increases. In contrast, randomized algorithms
are more robust to delay, and when there is a one-hour delay, (optimistic) Thompson sampling is
significant better than others (given the size of our data).

6 Conclusion

The extensive experimental evaluation carried out in this paper reveals that Thompson sampling is a
very effective heuristic for addressing the exploration / exploitation trade-off. In its simplest form,
it does not have any parameter to tune, but our results show that tweaking the posterior to reduce
exploration can be beneficial. In any case, Thompson sampling is very easy to implement and should
thus be considered as a standard baseline. Also, since it is a randomized algorithm, it is robust in the
case of delayed feedback.

Future work includes of course, a theoretical analysis of its finite-time regret. The benefit of this
analysis would be twofold. First, it would hopefully contribute to make Thompson sampling as
popular as other algorithms for which regret bounds exist. Second, it could provide guidance on
tweaking the posterior in order to achieve a smaller regret.
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