Lazy Approximation
An approach for solving continuous finite-horizon MDPs

Presented by Lihong Li
Joint work with Michael Littman
With thanks to N. Meuleau and other RL3 members

AAAI-05 / Rutgers Lab for Real-Life Reinforcement Learning (RL3)
Introduction

- Markov decision processes (MDPs)
 - Framework for decision-theoretic planning
- Many problems are continuous in nature
 - Transportation scheduling [Boyan & Littman 00]
 - Planetary rover planning [Bresina et al. 02]
Planetary Rover Example

- State components include
 - Remaining energy
 - Remaining execution time

- Continuous state transition
 - E.g., energy consumption of taking a picture

Both continuous

p.d.f. of energy consumption
Solving large-scale MDPs is difficult
- Curse of dimensionality

Solving continuous MDPs is even more difficult
- Need practical representations for
 - models
 - value functions
- Need efficient & stable approximate solutions
Notation

- **MDP**
 - X: continuous state space
 - Usually, $X = [0, 1)^k$
 - A: finite action set
 - T: transition function
 - R: reward function

- **Solving MDPs by dynamic programming**
 - Bellman equation

$$V^{n+1}(x) = \max_{a \in A} \left\{ R(x, a) + \int_X T(x'|xa)V^n(x')dx' \right\}$$
Previous Work

- [Boyan & Littman 00]: TiMDP
- [Feng et al. 04]: extension
- Limited to structured MDPs with
 - Reward function
 - PWC or PWLC
 - Continuous
 - Transition function:
 - Discrete
 - Need to pre-specify discretization resolution
 - Referred to as DM

Motivation: discretization-free?
LA Summary

Design objectives
- Continuous PWC transitions T
- Continuous PWC reward R
- Flexible error control
- Flexible function compactness control
 - Compactness: # pieces in PWC functions

Main idea
- Manipulate the continuous model directly
- Postpone approximation until necessary
 - Thus called *lazy approximation* (LA)

 But... we’re not lazy
Recall Bellman Equation

\[V^{n+1}(x) = \max_{a \in A} \left\{ R(x, a) + \int_{x} T(x' | xa) V^n(x') dx' \right\} \]

- Two transition models
 - Absolute model: \(T(x' | xa) = T(x' | a) \)
 - Relative model: \(T(x' | xa) = T(x' - x | a) \)

- Relative model is more challenging
 - Integral becomes a convolution of two PWCs
Basic Idea

\[V^n \xrightarrow{DP} V^{n+1} \xrightarrow{LA} \tilde{V}^{n+1} \xrightarrow{DP} \ldots \]

LA: \[V^0 \equiv 0 \xrightarrow{DP} \tilde{V}^1 \xrightarrow{DP} \tilde{V}^2 \xrightarrow{LA} \tilde{V}^2 \xrightarrow{DP} \tilde{V}^3 \xrightarrow{LA} \tilde{V}^3 \xrightarrow{DP} \ldots \]

Small Error: \[\epsilon_n = \left\| \tilde{V}^n - \tilde{V}^n \right\|_\infty \]

Compact Approximation:

\[\tilde{V}^n \]

DM: \[V^0 \equiv 0 \xrightarrow{DP} \tilde{W}^1 \xrightarrow{DP} \tilde{W}^2 \xrightarrow{DP} \tilde{W}^3 \xrightarrow{DP} \ldots \]
Extensions

- Multidimensional state spaces
 - PWC: constant in each hyper-rectangle
 - Can use kd-trees [Friedman et al. 77]
 - Convolution of two PWCs

\[\hat{V}^{n+1}(\vec{x}) = \prod_{i=1}^{k} (a_i x_i + b_i) \]

- Efficient LA:
 - Complexity of finding optimal constant-function approximation within each piece: \(O(k) \)
Extensions (cont’d)

- Non-PWC transition function
 - Approximate it w/ PWC
 - Favored by empirical evidence, over DM

- Dealing w/ discrete state components
 - Rover example
 - No additional essential difficulties
 - Can be handled within the same framework
Error Control

1. Explicitly control the approximation error
2. L_∞-error accumulates additively over horizons

Errors in DM rely on
1. Resolution
2. Smoothness of the value function: not measurable
Compactness Control

1. Explicit tradeoff w/ approximation error
2. Non-uniform partitioning: potentially much more compact at the same error level

Compactness/resolution in DM is usually determined a priori
Experiments

- Randomly generated 1-D problems
 - State space: \([0, 1)\)
 - Horizon: 10
 - PWC reward
 - PWC or Gaussian transitions
 - For Gaussian transitions
 - DM: use discretization
 - LA: use PWC approximation
Horizon = 1
Horizon = 5
Horizon = 10

<table>
<thead>
<tr>
<th></th>
<th>Time (s)</th>
<th>FuncSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>0.008</td>
<td>33</td>
</tr>
<tr>
<td>DM</td>
<td>0.1542</td>
<td>401</td>
</tr>
</tbody>
</table>
Error Results

![Graph showing Gaussian transitions with Max Error on the x-axis and Running Time (seconds) on the y-axis. The graph compares DM, LA (size=20), and LA (epsilon=0.01).]
Compactness Results

Gaussian transitions

- **DM**
- **LA (size=20)**
- **LA (epsilon=0.01)**
One Application

- Planetary rover planning
 - Two-location, two-object problem

- More realistic experiments in the future
Future Work

- Efficient data structures and algorithms for manipulating models
 - computing convolution is quite expensive with kd-trees
 - lazy approximation with specified error level
 - currently, greedy alg for high dimensional space

- Relax some structural constraints

- Implement wait/dawdle actions
 - [Boyan & Littman 00]
 - E.g., wait until sunrise to take high-quality pictures

- Real-world applications
 - E.g., planetary rover planning
Conclusions

- Developed *Lazy Approximation*
 - Solving continuous structured MDPs
 - Discretization-free
 - Flexible error control
 - Flexible compactness control

- For more details:
 - Rutgers CS Tech Report #577
 - RL³: http://www.cs.rutgers.edu/rl3

- Questions & comments?