Fast Feature Selection for Reinforcement-Learning-based Spoken Dialog Management: A Case Study

Lihong Li1 Jason D. Williams2 Suhrid Balakrishnan2

\texttt{lihong@cs.rutgers.edu jdw@research.att.com suhrid@research.att.com}

1Department of Computer Science, Rutgers University, Piscataway, NJ 08854
2AT&T Labs – Research, 180 Park Avenue, Building 103, Florham Park, NJ 07932

Example Application: Dialer

- AT&T internal voice dialer system w/ 50K employees in directory
- Phone types: cell, and/or office
- Can be modeled as a (partially observable) Markov decision process
 - Available actions
 - Reward function
 - AskName: “First and last name?”
 - -1 per action
 - ConfirmPhoneType: “Cell phone – is that right?”
 - +20 for correct transfer
 - -20 for incorrect transfer

Problem Statement

- LSPI is very data-efficient, but time-expensive
- Complexity: $O(k^3)$ – k is number of features
- Fast feature selection is needed
- Existing techniques do not scale well

Methodology

1. Run temporal difference to get a coarse estimate of $\{w_1, \ldots, w_k\}$
2. Fast (but rough) policy evaluation w/ Temporal Difference

Feature Selection Procedure

1. Evaluate π w/ Least-Squares Temporal Difference
2. Select most significant features

Results

- Comparisons
 - HC-Baseline
 - Running in production for the past 3 yrs
 - Hand-crafted policy
 - RL-Baseline
 - Choose representative states
 - Build an approximate model
 - Run value iteration to get π
- Number of raw features: 3456
- Number of features selected: 400
- Averaged over 10 runs
- Use 1000 dialogs for evaluation

Challenges

- Observations are noisy (due to speech recognition error)
 - Need handle partial observability
- Can maintain distributions over hidden variables (e.g., user intentions)
 - Extract features from conversation history
- Problem space is large
 - Need value function approximation
 - Linear function approximation w/ Least-Squares Policy Iteration (LSPI)