Analyzing Feature Generation for Value-Function Approximation

Ronald Parr, Christopher Painter-Wakefield
Duke University
Lihong Li, Michael Littman
Rutgers University

Value-Function Approximation in RL

Standard Bellman equation:

\[V^\pi = R + \gamma PV^\pi \]

T = Bellman operator

Linear value-function approximation:

\[\hat{V} = \sum_i w_i \phi_i \quad \text{linear combination of features} \]

\[\hat{V} = \Phi W = \Pi T \hat{V} \]

Fixed point

\[\Pi = \text{Projection into span of } \Phi = [\phi_1, \phi_2] \]

Feature Generation in RL

Features = Basis functions for linear value function approximation

- **Mahadevan & Maggioni [05]**
 - Use connectivity graph of the state space
 - Use spectral clustering/ manifold learning techniques

- **Keller, Mannor & Precup [06]**
 - Use the Bellman error
 - Function approximation applied to the Bellman error

Bellman Error:

\[BE(\hat{V}) = TV - V \]

Theoretical Result 1: Approximation Bounds

Linear fixed point approximation error [Van Roy 98]:

\[\left\| V^* - \hat{V} \right\| \leq \frac{1}{\sqrt{1 - \gamma}} \left\| V^* - \Pi V^* \right\| \]

\[\Pi V^* \]

Our first theorem says that adding one BEBF to our basis improves our approximation bound at least as much as one step of value iteration:

Let \(\hat{V} \) be the linear fixed point solution using a sequence of normalized BEBFs \(\phi_1, \ldots, \phi_n \). If \(\left\| V^* - \hat{V} \right\| \leq x \), then for new BEBF \(\phi_{n+1} \) with \(\Phi = [\Phi, \phi_{n+1}] \), and corresponding \(\Pi \), the improvement in the approximation bounds is

\[\left\| V^* - \Pi V^* \right\| < \left\| V^* - T \hat{V} \right\| \leq x \]

Our second theorem says that we can use an approximation, \(\hat{V} \), to the Bellman error as long as the approximation is reasonably accurate:

If (1) the angle between \(\phi_i \) and \(\hat{V} \) is less than \(\cos^{-1}(\gamma) \) radians and (2) \(\hat{V} \neq V^* \), then there exists a \(\beta \) such that \(\left\| V^* - (\hat{V} + \beta \phi_i) \right\| < \left\| V^* - \hat{V} \right\| \). Moreover, if conditions (1) and (2) hold and \(\phi_i \) is not in the span of \(\Phi \), then for \(\Phi' = [\Phi, \phi_{n+1}] \) and corresponding \(\Pi' \),

\[\left\| V^* - \Pi' V^* \right\| < \left\| V^* - \Pi V^* \right\| \]

Theoretical Challenge

Can we generate new basis functions with provable quality guarantees?

Our Answer: Yes — If we can approximate the Bellman error with sufficient accuracy

\[\phi_{n+1} = BE(\hat{V}) = TV - \hat{V} \]

\[\Phi' = [\phi_1, \phi_2, \ldots, \phi_n, \phi_{n+1}] \]

Application to the 50-state Chain Problem

[lagoudakis & Parr 03]

- 50 States numbered 1-50
- Noisy Actions: Move Right, Move Left (0.9 success)
- +1 Rewards at 10, 41
- 0.8 Discount

Empirical Results

Application to PuddleWorld

From Boyan & Moore [1994]

“Ground Truth”

Results Using Exact BEBFs w/model

Error vs. Number of BEBFs w/8,000 samples, approximate BEBFs

LISPI w/BEF, LWR Bellman Error Approximation

All Features Generated Automatically

1 Training episode = 10 steps or until goal is reached

From Boyan & Moore [1994]

LWR = Locally Weighted Regression

LSTD w/LWR

LSTD w/LWR