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Abstract—Research in the past decade on statistical relational
learning (SRL) has shown the power of the underlying networkof
relations in relational data. Even models built usingonly relations
often perform comparably to models built using sophisticaéd re-
lational learning methods. However, many data sets—such alsose
in the UCI machine learning repository—contain no relatiors.
In fact, many data sets either do not contain relations or hae
relations which are not helpful to a specific classificationdsk. The
question we investigate in this paper is whether it is possle to
construct relations such that relational inference resuls in better
classification performance than non-relational inference Using
simple similarity-based rules to create relations and weilting
the strength of these relations using homophily on instanckabels,
we test whether relational inference techniques are applable—in
other words, do they perform comparably to standard machine
learning algorithms. We show, in an experimental study on31
UCI benchmark data sets, that relational inferecne wins moe
than any of the 6 classifiers we compare against, including a
transductive SVM, and that it wins the majority of the time
when compared against any one of them.

Index Terms—machine learning; statistical relational learning;
feature construction; supervised learning

I. MOTIVATION

Statistical relation learning (SRL) is a relatively youngt b

for relational learning and modeling, even such non-sahsic
relations may in fact improve classification performance if
chosen carefully. Conversely, some relations—whether ¢nu
inferred—may not be at all relevant to a given classification
problem whereas others may be very relevant. The problem
is then to first identify or create candidate relations and
then selecting the relations which are useful for a paricul
classification task. In other words, identifying (or cregi
relevant relations is analogous to standard feature diirac
and construction.

This work focuses on the question of whether it is possible

to use the attributes of the instances to construct “meéuiing
relations between instances in such a way as to have redtion
learning algorithms and relational inference not only bpliap
cable but also be able to perform comparable to, or better, tha
existing mature (non-relational) machine learning aldonis.
As mentioned above, constructing such relational features
is in large part analogous to standard feature construction
except the potential power of this approach is that we can
now leverage powerful relational inference techniqgueh s
collective classification (see, e.g., [7]).

Recent work has shown a method for using an univariate

growing field within machine learning which focuses on thgraph-based relational learning algorithm (only labelsl an
problem of classification with networked data in various daelations are used) with local attributes as well as explici

mains and settings (e.g., [1], [2], [3], [4], [5], [6]). Netnked

relations [8]. This work combined results from SRL and semi-

data consists of instances, generally of the same type suchs@pervised learning to produce a hybrid network consisting
web-pages or text documents, that are connected via vari@ylicit links and text-mined links. The work relied on an

explicit relations such as one paper citing another, hypes|

univariate algorithm forwithin-network classification: given

between web-pages, or people calling each other. Contraspartially labeled network (some nodes have been labeled),
this with traditional machine learning where instances ¢0 habel the rest of the nodes in the netwdrkhe work showed
classified are assumed to be (independent and identically how to combine multiple networks in such a way that relations

distributed), an assumption that is critical for the unged

from each network are weighted in a manner consistent with

theory of traditional machine learning. Machine learnirags h the amount of signal there is in the network. However, the

a rich history with mature algorithms for inducing class#ie

paper failed to show how to use local attributes beyond using

many of which generally perform very well. Although mostext-similarity for text-based instances. As such it faila the
relational learning algorithms can be used on traditionat mpromise of truly using local attributes—namely how to catve

chine learning data, they degenerate into standard machig€al attributes into relations that can be used by relafion
learning algorithms because there are no relations bettheen|earners.

instances to leverage. However, we note that many data set$his paper focuses specifically on this short-coming and de-
are inherently relational even if their published form haem  scribes how to create relations from the attributes in tigtl
“cleaned” to fit into a non-relational format ready for standi machine learning benchmark data sets such that relational

machine learning or other analytics. Even for data that m@arners and relational inference can be used and that they
not be inherently relational, one can certainly argue that t

'r.]St.an(?eS that are very S|m|I§r may be “related” due to thelrlThis analogous semi-supervised learning and transdutgaeing, but
similarity, whether the semantics of such truly hold. Hoemv focused on networked data.
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perform comparably to standard machine learning methodsRelational Bayesian Networks (RBNs, a.k.a. Probabilistic
This conversion to a network makes it possible to harness tRelational Models [12], [1], [13] were applied in a within-
power of relational learning and collective inference. \ew network classification by Taskar et al. [13] to various damsai
that collective inference has the ability to greatly imgrovincluding a data set of published manuscripts linked by @usth
classification performance [7]. By providing a systematid a and citations. Loopy belief propagation [14] was used to
objective framework for creating relations based on similperform the collective inference. The study showed that the
attribute values, we now open the door for relational infeez PRM performed better than a non-relational naive Bayes
to be applied to traditional non-relational data sets. classifier and that using both author and citation infororati

The approach we take in this paper is generate relationsconjunction with the text of the paper worked better than
based on each attribute and compute the signal in thassing only author or citation information in conjunctiontiwi
relations using a metric known asde-based assortativifs], the text.
a metric that measures the likelihood that two related imeta ~ Techniques recently developed in the area of semi-
share the same class. We then keep only the relations with higipervised learning (e.g., [15], [16], [9], [4]) in a transtive
signal. Based on the approach taken in earlier work, we alsetting (cf. [17]) are directly relevant to the work presehin
generate relations based on instance similarity [9], [8)rE this paper. Specifically, they consider data sets whereldabe
though the approach taken in this paper is quite simple, thee given for a subset of cases, and classifications areedesir
experimental results show that it works quite well, sudgest for a subset of the rest. They connect the data into a weighted
that more research in this area can yield ever more significametwork, by adding edges (in various ways) based on sinyilari
improvements. between cases. In fact, prior work on combining explicikéin

We test our approach to attribute-based relationship ci&nd text-mined links [8] leveraged the work of Zhu et al. [9]
ation on 31 data sets taken from the UCI repository [10]and Wang and Zhang [4].
comparing the classification performance of an univariate There has been a lot of work in creating similarity metrics
relational learner on the created networks to that of stahd®r distance metrics between instances over the past three
machine learning on the original data. Our results show th@gcades, more than we can cover here, and some of which
this approach works quite well and that relational infeeeneve used in this work. These have been used in a variety of
outperforms traditional learners on more data sets than #fgblem settings such as (relational) instance baseditgarn
of the other learners and that, when compared against d&@yd., [18], [19]), nearest neighbor approaches (e.g.]),[20
one learner, relational inference wins the majority of theemi-supervised learning (see, e.g., [4]), and relatita@ahing
time. We further explore how much of the performance gai€.9., [21]).
is due to collective inference and how this changes based
on the size of the training examples. As this is similar to o ]
transductive learning, we also compare to transductive SYMWe use an existing and proven method for performing
on the binary classification problems, where we show thgi@ssification of networked data: the weighted-vote refgl
relational inference wins the majority of the time but isensi N€ighbor (wvRN) paired with relaxation labeling (RL) [22)rf
of magnitude faster than transductive SVM. collective inference [5]. Using wvRN with an iterative ldbe

We next describe related work, followed by a descriptioWOp""g"jltion such as relaxation labeling has been shown to
of our approach to the within-network classification tasbh perform better than other collective or exact inferencehods

attribute-based relations are created and how we comb@e W‘\] [5]-

different kinds of relations. We then describe our caseystud  The weighted-vote Relational Classifier (wvRN)
in which we test our approach, and conclude with a discussio

of the results.

IIl. CLASSIFICATION IN NETWORKED DATA

"rhe WvRN classifier estimates class-membership proba-
bilities based on two assumptions: (1) that the label of a
node depends only on its immediate neighbors, and (2) the
entities in the graph exhibit homophily—i.e., linked eietit

The focus of this paper is on ways to enable SRL algorithri@ve a propensity to belong to the same class (cf. [23]).

to be applicable to single-table data used in traditionaihire  This homophily-based model is motivated by observations
learning. and theories of social networks [23], where homophily is

Il. RELATED WORK

Macskassy and Provost [5] investigated a simple univarig{@iquitous. .
classifier, the weighted-vote relational neighbor (wRRjey ~ Definition. Givenv; € VY, WwvRN estimatesP(z;|\;) as
instantiated node priors simply by the marginal class feeqy the (weighted) mean of the class-membership probabilifes
in the training data. The wvRN classifier performs relatlond€ entities in\;:
classification via a weighted average of the estimated class 1
membership scores (“probabilities”) of the node’s neigisbo Plai = XIN:) = Z Z wij - Pzj = XING),
Collective inference is performed via a relaxation labglin v N
method similar to that used by Chakrabarti et al. [11]. Wathere VU is the set of unlabeled vertices in graph \; is
use this classifier in our case study. the set of neighbors for node, andZ is the usual normalizer.
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As this is a recursive definition (for undirected graphs,c A. Creating relations from categorical attributes
N; & v; € Nj) the classifier uses the “current” estimate for gor 5 categorical attribute}}, the instance attribute value
P(z; = X|Nj). can only be one of a fixed set of values. If two instances have

B. Relaxation Labeling (RL) the same observed value for attributg, then we create an

o edge between them. The strength of the relationship isreithe
For the collective inference part of our study, we use relax-gr o relationship. In other words:

ation labeling (RL) as described in Macskassy and Provdst [5 .
Rather than treat grapghi as being in a specific labeling “state” wi(zi, ;) = 1 iz, =)k
at ever i I i k Lt O Otherwise
y point (e.g., as a Gibbs sampler does), relaxation
labeling retains the uncertainty, keeping track of the enfrr  \ve treat each possible value of the categorical attribijte
probablllty estimates fOfUi € VU. RL then “freezes” the as a separate candidate relation.
current estimations so that at steg- 1, all vertices will be _ ) _ _
updated based on the estimations from stefollowing prior B- Creating relations from numerical attributes
work, we employ a simulated annealing approach to ensuréNe create an edge between two instances based on how
convergence—each subsequent iteration gives more weightlose their two observed values are. We normalize the gtieng
a node’s own current estimate and less to the influence of df relations to lie betweer) and 1 using the following
neighbors. equation:
More formally, RL inference with wvRN is defined as:
. |Ii,k - Ij,k|
wg(zi, ) =1—min (1, ————— |,

maxy — ming

C§t+1) _ 5(t+1) -WVRN(C(t)) + (1_B(t+1)) ) Cgt)’
wherec!" is a vector of probabilities (probability distribution)Wheremmk an-d max are the minimum and maX|_ml_Jm.ob-
¢ served values in the training set. We put an upper limit oir the

which represents an estimate ;|IN;) at time stept and . : .
P Blz:|N:) P differences to ensure that the weight does not become wmegati

() ' i i
WVRN.(C ) denotes applymg W.VRN using all the est|mateﬁ0r test instances). We consider both the raw differenaeedls
from time stept. We define the simulated annealing constants

as: as the normalized difference when creating candidateioakt
B8 =k, B = ) . o C. Creating relations using instance similarity

wherek is a constant betweehand 1. Following prior work 1 Nhe final type of relationship we consider in this paper is
([5]), we setk = 1.0, anda = 0.9 is a decay constant, whichthat of instance-based similarity (see [18]). We createnk li

we set t00.99. between two instances with a weight that is the inverse of the
euclidean distance between the two instances. Specifically
IV. CREATING ATTRIBUTE-BASED RELATIONS 1
First, we introduce some notation. An instance, is we(zs,z;) = [ 1+ ZdiStQ(Ii,k, zj0)/n ’
represented agx;,y;), wherex; = {z; 1,...,x; ,} represent k

the attribute values for instaneg, andy; € C is its label. Each ] _ ) ]
attribute valuez; ,, belongs to an attribute clask,, where Wheren is the number of attributes and the distance function

X, is either a fixed categorical set (e.gx = {A, B,C}), an IS one of the fur\ctions above .ba.sed on the attribute_ type.
ordinal set (e.g.X;, = {1,2, 3}) or continuous (€.g.X;, = R). Based on prior work, we limit the number of similarity
We abstract these possibilities into two broad categorid¥@sed edges to for each node [4], [8]. In other words, for
categorical or numeric values. We note that this categtiviza instancez;, we add an edge to its most similar nodes.

is how machine learning generally handles attributes. ¢, fa
many machine learning algorithms convert categorical into
indicator variables and treat the indicator variables anenic.

V. SELECTING RELATIONS

Prior work has addressed how one should go about combin-
We represent the created network as a grapk (V, E) ing multiple networks such as those created by the different
where V' is the set of vertices in the graph (one ve’rtex, p&ttribute-based relati(_)ns we have jus_t_describ_eql [8]. Bpec
instance) and” is the set of edges in the graph. The relation%a”y’. they used a variant of thassortativity cqeﬁ|_C|erﬁ24]—a
etric to measure the amount of homophily in a network—

we create will form these undirected weighted edges. . .
denote different relations by different edge types. Theghei called thenode-basedssortativity metric. We adopt the same
i approach here.

of an edge between; andz; based on attributé’;, is defined . .
g o i K The node-based assortativity score uses the correlation

aswy(x;, ;). ) ) o
The approach we take in this paper is to create one reﬁagtwsen ;[jhe cltarllsses “r;:fed b&/ et()alges n tatgr_f;\ph. Stpecmcally,
tionship per attribute and one relationship based on igsta IS based on the graph's node-basesortativity matrix—a
xC matrix, where celk;; represents, for (all) nodes of class

similarity (analogous to what has been done before). The . ) . ! :
fore, an instance which is made up wfattributes will have ¢;, the average fraction of their weighted links that link them

n+ 1. Cand'd?‘te relations. These "’}re W?|ghted. and pruned by:ci may be in the tom of another instance and its actual degree can
how informative they are as described in Section V. therefore be more tha



To appear in the Tenth International Conference on Machirarhing and Applications, 2011

Attributes Number

Name Size Nom. Num. Classes
annealing 898 32 6 5
autos.imports-85 203 10 15 2
balance-scale 625 0 4 3
breast-cancer 699 0 9 2
breast-cancer (wdbc) 569 0 30 2
cmc 1473 7 2 3
credit-screening 690 9 6 2
cylinder-bands 540 19 20 2
dermatology 366 0 34 6
echocardiogram 131 0 11 2
ecoli 336 0 7 8
glass 214 0 9 2
haberman 306 0 3 2
heart-disease (cleveland) 303 0 13 2
heart-disease (hungarian) 294 0 13 2
hepatitis 155 13 6 2
horse-colic 368 16 7 2
ionosphere 351 0 34 2
iris 150 0 4 3
liver-disorders 345 0 6 2
musk (cleanl) 476 0 166 2
pima-indians-diabetes 768 0 8 2
sonar 208 0 60 2
tae 151 4 1 3
thyroid (new-thyroid) 215 0 5 3
thyroid (sick-euthyroid) 3163 18 7 2
vehicle 846 0 18 4
water-treatment 527 0 38 3
wine 178 0 13 3
yeast 1484 0 8 10
Z00 101 15 1 7
TABLE |

CHARACTERISTICS OF THE31 DATA SETS USED IN THIS STUDY

to nodes of class;, such that)",.e;; = 1. The node-based
assortativity coefficientAdg, is then calculated as follows:

Ap = 2iCii 20 bi

1

wherea; = Zj ei; andb; =
We then reweight edges for a node such that the ed

=2 i bi

> €ij-

weights for edge typds sums toAg.

The advantage of this approach is that it is very general afl
can easily be used with an arbitrary number of edge typ@g
each having their own semantics of edge-weights and edé;e

statistics.

VI.

The main thesis of this paper is that by converting a standa
non-relational machine learning data set into a relatioladh
set, we can apply relational inference and gain the inher%nﬁl
advantages of relational learning and collective clasgifio.
This case study will empirically test this thesis using théRM
classification method (with and without collective classifi
tion) and compare it against standard machine learning

STUDY

transductive learning classifiers.

A. Data

We use31 benchmark data sets from the UCI machine 3available atht t p: // net kit - sr|

)

B. Experimental Methodology

In order to combine the newly created edges we must
computeAg. Since this computation requires labels in order
to compute the individuat;; cells in the assortativity matrix,
we use only nodes for which the label is known. Second, as
Apg tends toward$, the signal in that type of edge disappears.
We therefore remove any edge if thel; < 0.05.

We use the NetKit toolkit [5] to run all our experiments
as it has a framework to make it easy to use the exact same
experimental environment across all methods. For traditio
machine learners, we leveraged NetKit's capability to use
Weka [25] classifiers.

We compared wvRN td off-the-shelf standard machine
learning algorithms: j48 (Weka’s implementation of C4.5),
nearest neighbor with = 5%, logistic regression, naive Bayes,
and smo (a linear svm). These classifiers are available in
Weka and were all run within the NetKit to keep as much
of the environment identical as possible. We note here that
we are using vanilla classifiers and do not try to optimize for
parameters in any classifier, and not for the relation craati
either. Clearly all methods can perform better with leagnin
of the hyper-parameters, but we here explore how well these
methods work against each other in general.

Because the within-network classification is analogous to
semi-supervised learning and transductive learning for- no
relational data, we also compare to the transductive SVM
classifier which is available in SVK4#"t.5> We ran it with a
linear kernel.

We use accuracy as the measure of performance, where
accuracy is based of-fold stratified cross-validation.

C. Results

The five standard supervised learners, the transductive,SVM
and wvRN (without collective inference) were all run on the
%ta and the best learner on a data set (best average accuracy
ver 10 runs) was compared against the next-best learmag usi
d)airedt—test to see if the accuracy difference was significant
thep = 0.05 level. The results are shown in Table Il.

We see that wwRN had the best accuracyl@nof the 31

ata sets§ of which were significant wins), which means it
won more than any other learner. The next-best classifier was
logistic regression which wof times, but only one of those
VPIH”lS were significant. In addition, we see that when compared
one-on-one against any of the other classifiers, it wins the
f;\jority of the time. This validates the main thesis of thpgra

at generating relations and using relational learning ca
in fact result in significant classification performancetenf
beating other classifiers. We also see that when it does mot wi
it often performs quite poorly, suggesting that there may be

ané)

some underlying data characteristics where relationatémfce
will work and others where it fails. We did explore whether
there were some indicators based on the type of relations

. sour cef or ge. net

learning repository [10]. The data sets we use are listed i was set following prior work [8].

Table 1.

5Available athtt p: // svri i ght . j oachi ns. org
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Classifier
logistic naive
Data Set prior j48 knn5 regression Bayes  smo tsvm WVRN
anneal 0.762 | 0.924 0.937 NA 0.718 NA 0.777
autos.imports-85 0.562 | 0.897 0.895  0.814 0.884  0.889 0.895 0.900
balance-scale 0.461 | 0.767 0.879  0.896 0.907 0.877 0.706
breast-cancer 0.655 | 0.951 0.964  0.967 0.959  0.965 0.939 0.896
breast-cancer (wdbc) 0.627 | 0.952 0.967  0.949 0.926 0.972 0.919 0.902
cmc 0.427 | 0.514 0.477  0.505 0.516  0.499 0.677*
credit-screening 0.555 | 0.862 0.876 0.846 0.796 0.856 0.838 0.868
cylinder-bands 0.578 | 0.698 0.713  0.735 0.789  0.817 0.779 0.770
dermatology 0.306 | 0.964 0.958  0.964 0.972 0.967 0.630
echocardiogram 0.672 | 0.908 0.875  0.885 0.850  0.892 0.833 0.954
ecoli 0.426 | 0.852 0.885  0.854 0.882  0.821 0.976*
glass 0.762 | 0.935 0.955  0.931 0.935  0.945 0.900 0.995
haberman 0.735 | 0.709 0.683  0.742 0.753  0.783 0.723 0.784
heart-disease (cleveland) 0.541 | 0.789 0.786 0.838 0.807  0.828 0.800 0.730
heart-disease (hungarian) 0.639 | 0.772 0.639 0.857 0.829 0.821 0.804 0.824
hepatitis 0.794 | 0.760 0.850  0.843 0.836  0.864 0.857 0.807
horse-colic 0.663 | 0.676 0.653  0.739 0.681 0.744 0.817* 0.673
ionosphere 0.641 | 0.909* 0.859  0.877 0.829  0.879 0.832 0.777
iris 0.333 | 0.971 0.971 0.986 0.964  0.971 0.993
liver-disorders 0.580 | 0.687 0.591 0.681 0.576  0.545 0.658 0.844*
musk (cleanl) 0.565 | 0.840 0.836  0.859 NA 0.838 0.816 0.992*
pima-indians-diabetes 0.651 | 0.730 0.751 0.780 0.766  0.763 0.751 0.738
sonar 0.534 | 0.750 0.795  0.713 0.695  0.775 0.760 0.995*
tae 0.344 | 0.540 0.393 0.573 0.543  0.536 0.527
thyroid (new-thyroid) 0.698 | 0.948 0.950  0.963 0.980  0.895 0.995
thyroid (sick-euthyroid) | 0.907 | 0.981 0.925 0.957 0.839 0.910 0.927 0.964
vehicle 0.258 | 0.726 0.720  0.799* 0.468  0.736 0.551
water-treatment 0.861 | 0.881 0.900 0.894 0.867 0.921* 0.892
wine 0.399 | 0.944 0.953  0.949 0.965  0.988 0.989
yeast 0.312 | 0.538 0.569  0.594 0.573  0.559 0.549
Z00 0.406 | 0.920 0.900 0.970 0.922 0911 0.800
# Wins (bold) | 2 2 8 2 4 1 12
# wins vs. wRN (out of31) | 12 14 15 14 15 8/18
TABLE Il

AVERAGE ACCURACIES OF THE SEVEN LEARNERS USINGO-FOLD CROSS VALIDATION. THREE CELLS ARE LISTED ASNA BECAUSEWEKA DID NOT
RETURN A CLASSIFIER FOR THOSE DATATRANSDUCTIVE SVM (TSVM) ONLY HAS RESULTS FOR DATA SETS WITH A BINARY CLASSIFICATION ROBLEM.
CLASS PRIOR IS SHOWN IN COLUMN2 FOR REFERENCE THE LAST TWO ROWS SHOW HOW OFTEN EACH LEARNER WOKHAD THE BEST PERFORMANCH

AND WON WHEN COMPARED1-ON-1VS. WWRN. BEST PERFORMERS FOR EACH DATA SETS IS SHOWN IN BOLIPERFORMANCE WHICH WAS
SIGNIFICANTLY THE BETTER THAN OTHER METHODS(AT p < 0.05)), AS MARKED BY A *.

Classifier (Each cell shows (#overall wins/#wins against wwRN-RL)
logistic naive

(# Wins / vs wwRN-RL) | j48 knn5 regression Bayes smo tsvm wvRN  wvRN-RL

10% training 3/25  4/24 9/27 5/26  7/26 3/10 1 2

30% training 3/20 3/17 6/18 5/20 8/21 1/6 4 7

50% training 2/14  1/14 4/14 5/14  6/16  1/5 7 13

70% training 2/12  3/12 5/15 4/14  5/17  1/6 9 12

90% training 2/12  2/14 8/14 2/12  4/15 1/8 12 10
TABLE 1l

NUMBER OF TIMES EACH OF THE SEVEN LEARNERS WONBEST AVERAGE ACCURACY OVER10 RUNS), AS WE INCREASE THE TRAINING SET SIZE FROM
10%T0 90%. EACH CELL SHOWS THE NUMBER OF TIMES(OUT OF 31; OR OUT OF18 FOR TSVM) THAT THE LEARNER HAD THE BEST AVERAGE
ACCURACY, AND HOW MANY TIMES IT WAS BETTER THAN WVRN-RL.

extracted or their assortativity score. Unfortunately, wiere
not able to identify any clear signal, but it is a question fdsest performance similar to the first experiment as well & ho

further study.

One key technique in relational learning is its use
collective inference to find the optimal joint labeling of tile

test labels and we next explore whether the power of collecti

inference does translate to these constructed relatiatal d

tracked, for each run, how often each of the learners had the

often the standard classifiers won over wwvRN-RL. Table Il
O?hows the summarized result of these runs.

The results are quite enlightening and highlight interggti
problems that need to be explored better. First, we observe
that logistic regression was generally a strong performars

We added wvRN-RL (the collective inference version ofvas smo (linear SVM that comes with Weka). Unsurprisingly,
WVRN) to the set of learners tested and varied the amountwé observe that the non-collective version of wvRN is not
training data fromd0% down to10% of the total data set. We competitive at all when only a few training labels are ava#a
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