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Abstract—Research in the past decade on statistical relational
learning (SRL) has shown the power of the underlying networkof
relations in relational data. Even models built usingonly relations
often perform comparably to models built using sophisticated re-
lational learning methods. However, many data sets–such asthose
in the UCI machine learning repository–contain no relations.
In fact, many data sets either do not contain relations or have
relations which are not helpful to a specific classification task. The
question we investigate in this paper is whether it is possible to
construct relations such that relational inference results in better
classification performance than non-relational inference. Using
simple similarity-based rules to create relations and weighting
the strength of these relations using homophily on instancelabels,
we test whether relational inference techniques are applicable–in
other words, do they perform comparably to standard machine
learning algorithms. We show, in an experimental study on31
UCI benchmark data sets, that relational inferecne wins more
than any of the 6 classifiers we compare against, including a
transductive SVM, and that it wins the majority of the time
when compared against any one of them.

Index Terms—machine learning; statistical relational learning;
feature construction; supervised learning
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Statistical relation learning (SRL) is a relatively young but
growing field within machine learning which focuses on the
problem of classification with networked data in various do-
mains and settings (e.g., [1], [2], [3], [4], [5], [6]). Networked
data consists of instances, generally of the same type such as
web-pages or text documents, that are connected via various
explicit relations such as one paper citing another, hyperlinks
between web-pages, or people calling each other. Contrast
this with traditional machine learning where instances to be
classified are assumed to beiid (independent and identically
distributed), an assumption that is critical for the underlying
theory of traditional machine learning. Machine learning has
a rich history with mature algorithms for inducing classifiers,
many of which generally perform very well. Although most
relational learning algorithms can be used on traditional ma-
chine learning data, they degenerate into standard machine
learning algorithms because there are no relations betweenthe
instances to leverage. However, we note that many data sets
are inherently relational even if their published form has been
“cleaned” to fit into a non-relational format ready for standard
machine learning or other analytics. Even for data that may
not be inherently relational, one can certainly argue that two
instances that are very similar may be “related” due to their
similarity, whether the semantics of such truly hold. However,

for relational learning and modeling, even such non-sensical
relations may in fact improve classification performance if
chosen carefully. Conversely, some relations–whether true or
inferred–may not be at all relevant to a given classification
problem whereas others may be very relevant. The problem
is then to first identify or create candidate relations and
then selecting the relations which are useful for a particular
classification task. In other words, identifying (or creating)
relevant relations is analogous to standard feature extraction
and construction.

This work focuses on the question of whether it is possible
to use the attributes of the instances to construct “meaningful”
relations between instances in such a way as to have relational
learning algorithms and relational inference not only be appli-
cable but also be able to perform comparable to, or better than,
existing mature (non-relational) machine learning algorithms.
As mentioned above, constructing such relational features
is in large part analogous to standard feature construction,
except the potential power of this approach is that we can
now leverage powerful relational inference techniques such as
collective classification (see, e.g., [7]).

Recent work has shown a method for using an univariate
graph-based relational learning algorithm (only labels and
relations are used) with local attributes as well as explicit
relations [8]. This work combined results from SRL and semi-
supervised learning to produce a hybrid network consistingof
explicit links and text-mined links. The work relied on an
univariate algorithm forwithin-network classification: given
a partially labeled network (some nodes have been labeled),
label the rest of the nodes in the network.1 The work showed
how to combine multiple networks in such a way that relations
from each network are weighted in a manner consistent with
the amount of signal there is in the network. However, the
paper failed to show how to use local attributes beyond using
text-similarity for text-based instances. As such it failed in the
promise of truly using local attributes–namely how to convert
local attributes into relations that can be used by relational
learners.

This paper focuses specifically on this short-coming and de-
scribes how to create relations from the attributes in traditional
machine learning benchmark data sets such that relational
learners and relational inference can be used and that they

1This analogous semi-supervised learning and transductivelearning, but
focused on networked data.
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perform comparably to standard machine learning methods.
This conversion to a network makes it possible to harness the
power of relational learning and collective inference. We know
that collective inference has the ability to greatly improve
classification performance [7]. By providing a systematic and
objective framework for creating relations based on similar
attribute values, we now open the door for relational inference
to be applied to traditional non-relational data sets.

The approach we take in this paper is generate relations
based on each attribute and compute the signal in those
relations using a metric known asnode-based assortativity[5],
a metric that measures the likelihood that two related instances
share the same class. We then keep only the relations with high
signal. Based on the approach taken in earlier work, we also
generate relations based on instance similarity [9], [8]. Even
though the approach taken in this paper is quite simple, the
experimental results show that it works quite well, suggesting
that more research in this area can yield ever more significant
improvements.

We test our approach to attribute-based relationship cre-
ation on 31 data sets taken from the UCI repository [10],
comparing the classification performance of an univariate
relational learner on the created networks to that of standard
machine learning on the original data. Our results show that
this approach works quite well and that relational inference
outperforms traditional learners on more data sets than any
of the other learners and that, when compared against any
one learner, relational inference wins the majority of the
time. We further explore how much of the performance gain
is due to collective inference and how this changes based
on the size of the training examples. As this is similar to
transductive learning, we also compare to transductive SVM
on the binary classification problems, where we show that
relational inference wins the majority of the time but is orders
of magnitude faster than transductive SVM.

We next describe related work, followed by a description
of our approach to the within-network classification task, how
attribute-based relations are created and how we combine the
different kinds of relations. We then describe our case study
in which we test our approach, and conclude with a discussion
of the results.

II. RELATED WORK

The focus of this paper is on ways to enable SRL algorithms
to be applicable to single-table data used in traditional machine
learning.

Macskassy and Provost [5] investigated a simple univariate
classifier, the weighted-vote relational neighbor (wvRN).They
instantiated node priors simply by the marginal class frequency
in the training data. The wvRN classifier performs relational
classification via a weighted average of the estimated class
membership scores (“probabilities”) of the node’s neighbors.
Collective inference is performed via a relaxation labeling
method similar to that used by Chakrabarti et al. [11]. We
use this classifier in our case study.

Relational Bayesian Networks (RBNs, a.k.a. Probabilistic
Relational Models [12], [1], [13] were applied in a within-
network classification by Taskar et al. [13] to various domains,
including a data set of published manuscripts linked by authors
and citations. Loopy belief propagation [14] was used to
perform the collective inference. The study showed that the
PRM performed better than a non-relational naive Bayes
classifier and that using both author and citation information
in conjunction with the text of the paper worked better than
using only author or citation information in conjunction with
the text.

Techniques recently developed in the area of semi-
supervised learning (e.g., [15], [16], [9], [4]) in a transductive
setting (cf. [17]) are directly relevant to the work presented in
this paper. Specifically, they consider data sets where labels
are given for a subset of cases, and classifications are desired
for a subset of the rest. They connect the data into a weighted
network, by adding edges (in various ways) based on similarity
between cases. In fact, prior work on combining explicit links
and text-mined links [8] leveraged the work of Zhu et al. [9]
and Wang and Zhang [4].

There has been a lot of work in creating similarity metrics
or distance metrics between instances over the past three
decades, more than we can cover here, and some of which
we used in this work. These have been used in a variety of
problem settings such as (relational) instance based learning
(e.g., [18], [19]), nearest neighbor approaches (e.g., [20]),
semi-supervised learning (see, e.g., [4]), and relationallearning
(e.g., [21]).

III. C LASSIFICATION IN NETWORKED DATA

We use an existing and proven method for performing
classification of networked data: the weighted-vote relational
neighbor (wvRN) paired with relaxation labeling (RL) [22] for
collective inference [5]. Using wvRN with an iterative label
propagation such as relaxation labeling has been shown to
perform better than other collective or exact inference methods
[4], [5].

A. The weighted-vote Relational Classifier (wvRN)

The wvRN classifier estimates class-membership proba-
bilities based on two assumptions: (1) that the label of a
node depends only on its immediate neighbors, and (2) the
entities in the graph exhibit homophily—i.e., linked entities
have a propensity to belong to the same class (cf. [23]).
This homophily-based model is motivated by observations
and theories of social networks [23], where homophily is
ubiquitous.

Definition. Given vi ∈ V U , wvRN estimatesP (xi|Ni) as
the (weighted) mean of the class-membership probabilitiesof
the entities inNi:

P (xi = X|Ni) =
1

Z

∑

vj∈Ni

wi,j · P (xj = X |Nj),

whereV U is the set of unlabeled vertices in graphG, Ni is
the set of neighbors for nodevi, andZ is the usual normalizer.
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As this is a recursive definition (for undirected graphs,vj ∈
Ni ⇔ vi ∈ Nj) the classifier uses the “current” estimate for
P (xj = X |Nj).

B. Relaxation Labeling (RL)

For the collective inference part of our study, we use relax-
ation labeling (RL) as described in Macskassy and Provost [5].
Rather than treat graphG as being in a specific labeling “state”
at every point (e.g., as a Gibbs sampler does), relaxation
labeling retains the uncertainty, keeping track of the current
probability estimates forvi ∈ V U . RL then “freezes” the
current estimations so that at stept + 1, all vertices will be
updated based on the estimations from stept. Following prior
work, we employ a simulated annealing approach to ensure
convergence—each subsequent iteration gives more weight to
a node’s own current estimate and less to the influence of its
neighbors.

More formally, RL inference with wvRN is defined as:

c
(t+1)
i = β(t+1) · wvRN(C(t)) + (1−β(t+1)) · c

(t)
i ,

wherec(t)i is a vector of probabilities (probability distribution)
which represents an estimate ofP (xi|Ni) at time stept and
wvRN(C(t)) denotes applying wvRN using all the estimates
from time stept. We define the simulated annealing constants
as:

β0 = k, β(t+1) = β(t) · α,

wherek is a constant between0 and1. Following prior work
([5]), we setk = 1.0, andα = 0.99 is a decay constant, which
we set to0.99.

IV. CREATING ATTRIBUTE-BASED RELATIONS

First, we introduce some notation. An instance,xi, is
represented as(xi, yi), wherexi = {xi,1, . . . , xi,n} represent
the attribute values for instancexi, andyi ∈ C is its label. Each
attribute value,xi,k, belongs to an attribute classXk, where
Xk is either a fixed categorical set (e.g.,Xk = {A,B,C}), an
ordinal set (e.g.,Xk = {1, 2, 3}) or continuous (e.g.,Xk = ℜ).
We abstract these possibilities into two broad categories:
categorical or numeric values. We note that this categorization
is how machine learning generally handles attributes. In fact,
many machine learning algorithms convert categorical into
indicator variables and treat the indicator variables as numeric.

We represent the created network as a graphG = (V,E),
whereV is the set of vertices in the graph (one vertex per
instance) andE is the set of edges in the graph. The relations
we create will form these undirected weighted edges. We
denote different relations by different edge types. The weight
of an edge betweenxi andxj based on attributeXk is defined
aswk(xi, xi).

The approach we take in this paper is to create one rela-
tionship per attribute and one relationship based on instance
similarity (analogous to what has been done before). There-
fore, an instance which is made up ofn attributes will have
n+ 1 candidate relations. These are weighted and pruned by
how informative they are as described in Section V.

A. Creating relations from categorical attributes

For a categorical attribute,Xk, the instance attribute value
can only be one of a fixed set of values. If two instances have
the same observed value for attributeXk, then we create an
edge between them. The strength of the relationship is either
1 or no relationship. In other words:

wk(xi, xj) =

{

1 ifxi,k = xj,k

0 otherwise

We treat each possible value of the categorical attributeXk

as a separate candidate relation.

B. Creating relations from numerical attributes

We create an edge between two instances based on how
close their two observed values are. We normalize the strength
of relations to lie between0 and 1 using the following
equation:

wk(xi, xj) = 1−min

(

1,
|xi,k − xj,k|

maxk −mink

)

,

wheremink andmaxk are the minimum and maximum ob-
served values in the training set. We put an upper limit on their
differences to ensure that the weight does not become negative
(for test instances). We consider both the raw difference aswell
as the normalized difference when creating candidate relations.

C. Creating relations using instance similarity

The final type of relationship we consider in this paper is
that of instance-based similarity (see [18]). We create a link
between two instances with a weight that is the inverse of the
euclidean distance between the two instances. Specifically:

w∗(xi, xj) =



1 +

√

∑

k

dist2(xi,k, xj,k)/n





−1

,

wheren is the number of attributes and the distance function
is one of the functions above based on the attribute type.

Based on prior work, we limit the number of similarity
based edges to5 for each node [4], [8]. In other words, for
instancexi, we add an edge to its5 most similar nodes.2

V. SELECTING RELATIONS

Prior work has addressed how one should go about combin-
ing multiple networks such as those created by the different
attribute-based relations we have just described [8]. Specifi-
cally, they used a variant of theassortativity coefficient[24]–a
metric to measure the amount of homophily in a network–
called thenode-basedassortativity metric. We adopt the same
approach here.

The node-based assortativity score uses the correlation
between the classes linked by edges in a graph. Specifically,
it is based on the graph’s node-basedassortativity matrix—a
CxC matrix, where celleij represents, for (all) nodes of class
ci, the average fraction of their weighted links that link them

2xi may be in the top-5 of another instance and its actual degree can
therefore be more than5.
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Attributes Number
Name Size Nom. Num. Classes
annealing 898 32 6 5
autos.imports-85 203 10 15 2
balance-scale 625 0 4 3
breast-cancer 699 0 9 2
breast-cancer (wdbc) 569 0 30 2
cmc 1473 7 2 3
credit-screening 690 9 6 2
cylinder-bands 540 19 20 2
dermatology 366 0 34 6
echocardiogram 131 0 11 2
ecoli 336 0 7 8
glass 214 0 9 2
haberman 306 0 3 2
heart-disease (cleveland) 303 0 13 2
heart-disease (hungarian) 294 0 13 2
hepatitis 155 13 6 2
horse-colic 368 16 7 2
ionosphere 351 0 34 2
iris 150 0 4 3
liver-disorders 345 0 6 2
musk (clean1) 476 0 166 2
pima-indians-diabetes 768 0 8 2
sonar 208 0 60 2
tae 151 4 1 3
thyroid (new-thyroid) 215 0 5 3
thyroid (sick-euthyroid) 3163 18 7 2
vehicle 846 0 18 4
water-treatment 527 0 38 3
wine 178 0 13 3
yeast 1484 0 8 10
zoo 101 15 1 7

TABLE I
CHARACTERISTICS OF THE31 DATA SETS USED IN THIS STUDY.

to nodes of classcj , such that
∑

ij eij = 1. The node-based
assortativity coefficient,AE , is then calculated as follows:

AE =

∑

i eii −
∑

i ai · bi
1−

∑

i ai · bi
,

whereai =
∑

j eij and bj =
∑

i eij .
We then reweight edges for a node such that the edge

weights for edge typeE sums toAE .
The advantage of this approach is that it is very general and

can easily be used with an arbitrary number of edge types,
each having their own semantics of edge-weights and edge
statistics.

VI. STUDY

The main thesis of this paper is that by converting a standard
non-relational machine learning data set into a relationaldata
set, we can apply relational inference and gain the inherent
advantages of relational learning and collective classification.
This case study will empirically test this thesis using the wvRN
classification method (with and without collective classifica-
tion) and compare it against standard machine learning and
transductive learning classifiers.

A. Data

We use31 benchmark data sets from the UCI machine
learning repository [10]. The data sets we use are listed in
Table I.

B. Experimental Methodology

In order to combine the newly created edges we must
computeAE . Since this computation requires labels in order
to compute the individualeij cells in the assortativity matrix,
we use only nodes for which the label is known. Second, as
AE tends towards0, the signal in that type of edge disappears.
We therefore remove any edge if theirAE < 0.05.

We use the NetKit toolkit [5]3 to run all our experiments
as it has a framework to make it easy to use the exact same
experimental environment across all methods. For traditional
machine learners, we leveraged NetKit’s capability to use
Weka [25] classifiers.

We compared wvRN to5 off-the-shelf standard machine
learning algorithms: j48 (Weka’s implementation of C4.5),k-
nearest neighbor withk = 54, logistic regression, naive Bayes,
and smo (a linear svm). These classifiers are available in
Weka and were all run within the NetKit to keep as much
of the environment identical as possible. We note here that
we are using vanilla classifiers and do not try to optimize for
parameters in any classifier, and not for the relation creation
either. Clearly all methods can perform better with learning
of the hyper-parameters, but we here explore how well these
methods work against each other in general.

Because the within-network classification is analogous to
semi-supervised learning and transductive learning for non-
relational data, we also compare to the transductive SVM
classifier which is available in SVMlight.5 We ran it with a
linear kernel.

We use accuracy as the measure of performance, where
accuracy is based on10-fold stratified cross-validation.

C. Results

The five standard supervised learners, the transductive SVM,
and wvRN (without collective inference) were all run on the
data and the best learner on a data set (best average accuracy
over 10 runs) was compared against the next-best learner using
a pairedt-test to see if the accuracy difference was significant
at thep = 0.05 level. The results are shown in Table II.

We see that wvRN had the best accuracy on12 of the 31
data sets (5 of which were significant wins), which means it
won more than any other learner. The next-best classifier was
logistic regression which won8 times, but only one of those
wins were significant. In addition, we see that when compared
one-on-one against any of the other classifiers, it wins the
majority of the time. This validates the main thesis of the paper
that generating relations and using relational learning can
in fact result in significant classification performance, often
beating other classifiers. We also see that when it does not win
it often performs quite poorly, suggesting that there may be
some underlying data characteristics where relational inference
will work and others where it fails. We did explore whether
there were some indicators based on the type of relations

3Available at:http://netkit-srl.sourceforge.net
4k was set following prior work [8].
5Available athttp://svmlight.joachims.org
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Classifier
logistic naı̈ve

Data Set prior j48 knn5 regression Bayes smo tsvm wvRN
anneal 0.762 0.924 0.937 NA 0.718 NA 0.777
autos.imports-85 0.562 0.897 0.895 0.814 0.884 0.889 0.895 0.900
balance-scale 0.461 0.767 0.879 0.896 0.907 0.877 0.706
breast-cancer 0.655 0.951 0.964 0.967 0.959 0.965 0.939 0.896
breast-cancer (wdbc) 0.627 0.952 0.967 0.949 0.926 0.972 0.919 0.902
cmc 0.427 0.514 0.477 0.505 0.516 0.499 0.677∗

credit-screening 0.555 0.862 0.876 0.846 0.796 0.856 0.838 0.868
cylinder-bands 0.578 0.698 0.713 0.735 0.789 0.817 0.779 0.770
dermatology 0.306 0.964 0.958 0.964 0.972 0.967 0.630
echocardiogram 0.672 0.908 0.875 0.885 0.850 0.892 0.833 0.954
ecoli 0.426 0.852 0.885 0.854 0.882 0.821 0.976∗

glass 0.762 0.935 0.955 0.931 0.935 0.945 0.900 0.995
haberman 0.735 0.709 0.683 0.742 0.753 0.783 0.723 0.784
heart-disease (cleveland) 0.541 0.789 0.786 0.838 0.807 0.828 0.800 0.730
heart-disease (hungarian) 0.639 0.772 0.639 0.857 0.829 0.821 0.804 0.824
hepatitis 0.794 0.760 0.850 0.843 0.836 0.864 0.857 0.807
horse-colic 0.663 0.676 0.653 0.739 0.681 0.744 0.817∗ 0.673
ionosphere 0.641 0.909∗ 0.859 0.877 0.829 0.879 0.832 0.777
iris 0.333 0.971 0.971 0.986 0.964 0.971 0.993
liver-disorders 0.580 0.687 0.591 0.681 0.576 0.545 0.658 0.844∗

musk (clean1) 0.565 0.840 0.836 0.859 NA 0.838 0.816 0.992∗

pima-indians-diabetes 0.651 0.730 0.751 0.780 0.766 0.763 0.751 0.738
sonar 0.534 0.750 0.795 0.713 0.695 0.775 0.760 0.995∗

tae 0.344 0.540 0.393 0.573 0.543 0.536 0.527
thyroid (new-thyroid) 0.698 0.948 0.950 0.963 0.980 0.895 0.995
thyroid (sick-euthyroid) 0.907 0.981 0.925 0.957 0.839 0.910 0.927 0.964
vehicle 0.258 0.726 0.720 0.799∗ 0.468 0.736 0.551
water-treatment 0.861 0.881 0.900 0.894 0.867 0.921∗ 0.892
wine 0.399 0.944 0.953 0.949 0.965 0.988 0.989
yeast 0.312 0.538 0.569 0.594 0.573 0.559 0.549
zoo 0.406 0.920 0.900 0.970 0.922 0.911 0.800

# Wins (bold) 2 2 8 2 4 1 12
# wins vs. wvRN (out of31) 12 14 15 14 15 8/18

TABLE II
AVERAGE ACCURACIES OF THE SEVEN LEARNERS USING10-FOLD CROSS VALIDATION. THREE CELLS ARE LISTED ASNA BECAUSEWEKA DID NOT

RETURN A CLASSIFIER FOR THOSE DATA. TRANSDUCTIVE SVM (TSVM) ONLY HAS RESULTS FOR DATA SETS WITH A BINARY CLASSIFICATION PROBLEM.
CLASS PRIOR IS SHOWN IN COLUMN2 FOR REFERENCE. THE LAST TWO ROWS SHOW HOW OFTEN EACH LEARNER WON(HAD THE BEST PERFORMANCE)

AND WON WHEN COMPARED1-ON-1 VS. WVRN. BEST PERFORMERS FOR EACH DATA SETS IS SHOWN IN BOLD. PERFORMANCE WHICH WAS

SIGNIFICANTLY THE BETTER THAN OTHER METHODS(AT p ≤ 0.05)), AS MARKED BY A ∗.

Classifier (Each cell shows (#overall wins/#wins against wvRN-RL)
logistic naı̈ve

(# Wins / vs wvRN-RL) j48 knn5 regression Bayes smo tsvm wvRN wvRN-RL
10% training 3/25 4/24 9/27 5/26 7/26 3/10 1 2
30% training 3/20 3/17 6/18 5/20 8/21 1/6 4 7
50% training 2/14 1/14 4/14 5/14 6/16 1/5 7 13
70% training 2/12 3/12 5/15 4/14 5/17 1/6 9 12
90% training 2/12 2/14 8/14 2/12 4/15 1/8 12 10

TABLE III
NUMBER OF TIMES EACH OF THE SEVEN LEARNERS WON(BEST AVERAGE ACCURACY OVER10 RUNS), AS WE INCREASE THE TRAINING SET SIZE FROM

10% TO 90%. EACH CELL SHOWS THE NUMBER OF TIMES(OUT OF31; OR OUT OF18 FOR TSVM) THAT THE LEARNER HAD THE BEST AVERAGE

ACCURACY, AND HOW MANY TIMES IT WAS BETTER THAN WVRN-RL.

extracted or their assortativity score. Unfortunately, wewere
not able to identify any clear signal, but it is a question for
further study.

One key technique in relational learning is its use of
collective inference to find the optimal joint labeling of all the
test labels and we next explore whether the power of collective
inference does translate to these constructed relational data.

We added wvRN-RL (the collective inference version of
wvRN) to the set of learners tested and varied the amount of
training data from90% down to10% of the total data set. We

tracked, for each run, how often each of the learners had the
best performance similar to the first experiment as well as how
often the standard classifiers won over wvRN-RL. Table III
shows the summarized result of these runs.

The results are quite enlightening and highlight interesting
problems that need to be explored better. First, we observe
that logistic regression was generally a strong performance as
was smo (linear SVM that comes with Weka). Unsurprisingly,
we observe that the non-collective version of wvRN is not
competitive at all when only a few training labels are available

5



To appear in the Tenth International Conference on Machine Learning and Applications, 2011

and that it is only competitive towards the end when 90%
of the data set is labeled. However, the collective version of
wvRN is clearly the better classifier when training≥ 50%.
We see that the two versions of wvRN clearly dominate when
90% of the data is labeled. One very interesting observation
is that wvRN-RL performs quite poorly when only10%
of the data is labeled, and while it has as many wins as
other classifiers at30%, it clearly does not perform as well
when head-to-head against any of the other classifiers. The
reason for this is because the relational data itself is not
well constructed. Specifically, the relations are selectedand
weighted based on their respective assortativity values, which
in turn are computed based on the available training set.
However, the efficacy of that metric is questionable if there
is not enough data, as noted by Macskassy and Provost [5].
In other words, the problem is not with relational inference
but with the construction of the relations. Again, this suggests
that more work is needed to understand how to set appropriate
parameters for the relation creation and weighting, as wellas
when we might expect relational inference to be useful.

VII. D ISCUSSION ANDL IMITATIONS

The thesis of this paper was that it was possible to create
relations among instances in a non-relational data set such
that relational inference would perform better than standard
classificiation. If this thesis was true, then we would increase
the number of learners we could bring to bear on general
machine learning problems.

We described a simple method of creating relational data by
creating relations for each attribute using a specific attribute-
type similarity function and described a principled way for
selecting and weighting these constructed relations.

We empirically tested our thesis by applying a relational
classifier on31 data sets from the UCI machine learning
repository. Our results supported our thesis, showing that
the relational classifier performed quite well, being the best
performer more than any other classifier and winning the
majority of the time when competing against any single other
classifier.

We also explored the contribution of collective inference.
We varied the amount of training data from 10% to 90% of
the data set to test how well collective inference performedas a
function of sparsity of labels. The results showed a very strong
classification performance using collective inference, but not
with the relational classifier itself. In fact, we observed that
the relational learning performance was poor when labels were
very sparse, but that it dominated once we have more then
30% of the instances labeled. Our relation construction method
relies heavily on having enough data to weight and construct
relations, and we believe that the poor performance was due
to poor relation construction. This follows observations made
in prior work [5].
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