Authentication in Peer-to-peer Systems

Vivek Pathak
Outline

- Introduction
 - Public key authentication
 - Existing models
- Motivation for Peer-to-peer authentication
 - Other solutions
- Byzantine fault tolerant authentication
 - Security model
 - Outline of correctness and performance
- Future work
Public Key Encryption

- Public-private key pair
- Bootstrap shared secret encryption
- Validation of digital signature
Authentication of Public Keys

- Mapping identities to public keys
 - Trusted third parties (TTP)
 - Certificate authority (CA)
 - Web of trust
 - PGP

```
$ssh eden.rutgers.edu
The authenticity of host 'eden.rutgers.edu (128.6.68.10)' can't be established.
Are you sure you want to continue connecting (yes/no)? [no]
```
Authentication through CA

- Provide public key certificate
- Use secure channel for bootstrapping
Authentication through CA
Authentication through CA

- Represent centralized aggregation of trust
 - Long lived CA keys
 - Single point of failure

- Public key revocation
 - Scalability with number of certified keys
Web of Trust

- Informal human authentication
 - PGP key rings
 - Levels of trust
Web of Trust

- Peers take on role of CA

- Decentralized trust
 - No single point of failure
 - Key authentication depends on human connections

- How to apply to autonomous systems
 - Sophisticated users
Outline

- Introduction
 - Public key authentication
 - Existing models
- Motivation for Peer-to-peer authentication
 - Other solutions
- Byzantine fault tolerant authentication
 - Security model
 - Outline of correctness and performance
- Future work
Characteristics of Peer-to-peer Systems

- Heterogeneous peers
 - Lack of trusted third parties
 - Hierarchical Certificate Authorities

- Large scale peer-to-peer systems
 - Need decentralized solution
 - Administrative burden on CA
 - Scalability of key revocation
Characteristics of Peer-to-peer Systems

- Autonomous operation
 - Unsophisticated users
 - Sensors and devices
 - Web of trust depends on constant human feedback

- Short lived public keys
 - Peers may be attacked and recover
 - Public key certificates require secure channel

- Malicious peers
Other Solutions

- Threshold encryption systems
 - Share the secret among a set of parties
 - Defend against a few compromised parties
 - Secure initialization phase

- Crypto based network IDs
 - Choose ID as function of public key
 - Depends on the routing infrastructure
Outline

- **Introduction**
 - Public key authentication
 - Existing models

- **Motivation for Peer-to-peer authentication**
 - Other solutions

- **Byzantine fault tolerant authentication**
 - Security model
 - Outline of correctness and performance

- **Future work**
System Model

- Mutually authenticating peers
 - Associate network end-point to public key

- Asynchronous network
 - No partitioning
 - Eventual delivery after retransmissions

- Disjoint message transmission paths
 - Man-in-the-middle attack on Ø fraction of peers
Attack Model

- Malicious peers
 - Honest majority
 - At most t of the n peers are faulty or malicious peers
 where $t = \frac{1-6\theta}{3} n$

- Passive adversaries

- Active adversaries
 - Relax network-is-the-adversary model
 - Unlimited spoofing
 - Limited power to prevent message delivery
Authentication Model

- Challenge-response protocol
 - No active attacks

- Man in the middle attack
 - Limited number of attacks

- Proof of possession of K_a
 \[
 \{b,a,\text{Challenge},K_a(r)\}_b, \{a,b,\text{Response},r\}_a
 \]
Authentication Model

- Distributed Authentication
 - Challenge response from multiple peers
 - Gather proofs of possession
- Lack of consensus on authenticity
 - Malicious peers
 - Man-in-the-middle attack
Authentication Correctness

- Validity of proofs of possession
 - \(\{e, a, \text{Challenge}, K_a(r)\}_e \), \(\{a, e, \text{Response}, r\}_a \)

- All messages are signed
 - Required for proving malicious behavior
 - Recent proofs stored by the peers

<table>
<thead>
<tr>
<th>From peers</th>
<th>(P_B)</th>
<th>(P_C)</th>
<th>(P_D)</th>
<th>(P_E)</th>
<th>(P_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From A</td>
<td>(P_B)</td>
<td>(P_C)</td>
<td>(P_D)</td>
<td>(P_E)</td>
<td>(P_F)</td>
</tr>
</tbody>
</table>
Byzantine Agreement Overview

- Publicize lack of consensus
 - Authenticating peer sends proofs of possession to peers

- Each peer tries to authenticate A
 - Sends its proof-of-possession vector to every peer
 - Byzantine agreement on authenticity of K_A

- Majority decision at every peer
 - Identify malicious peers
 - Complete authentication

<table>
<thead>
<tr>
<th>From B</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>From C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>From D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>From E</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>From F</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Byzantine Agreement Correctness Overview

- Consider proofs received at a peer P

Set of Peers of P
t malicious peers

Φ_n on compromised path to A
Φ_n on compromised path to P
Byzantine Agreement Correctness
Overview

- $t + 2\theta n$ may not arrive
 - P receives at least $n-t-2\theta n$ proofs

- $t + 2\theta n$ may be faulty
 - P receives at least $n-2t-4\theta n$ correct agreeing proofs
 - P decides correctly by majority if $n-2t-4\theta n > t + 2\theta n$

- Agreement is correct if $t < \frac{1-6\theta}{3} n$
Trust Groups

- Execute Authentication on smaller Trust groups
 - Quadratic messaging cost
 - Peer interest

- Trusted group
 - Authenticated public keys
 - Not (overtly) malicious

- Probationary group

- Un-trusted group
 - Known to be malicious
Growth of Trust Groups

- Governed by communication patterns
- Discovery of new peers
 - Authentication of discovered peers
 - Addition to trusted set
- Discovery of un-trusted peers
Evolution of Trust Groups

- Covertly malicious peers
 - May wait until honest majority is violated
 - Lead to incorrect authentication

- Periodic pruning of trusted group
 - Unresponsive peers
 - Remove older trusted peers from trust group
 - Reduce messaging cost
 - Randomize trusted group membership
 - Group migration event

- Probability of violating honest majority
Bootstrapping Trust Group

- Authentication needs an honest trust group
 - Initialize a Bootstrapping trust group
 - Needed for cold start
 - Authenticate each bootstrapping peer

- Size of bootstrapping trust group
 - Recover from trusting a malicious peer
 \[n > \frac{3}{1-\delta} \]
Public Key Infection

- Optimistic trust
 - Lazy authentication
 - Reduced messaging cost

- Cache of undelivered messages
 - Use peers for epidemic propagation of messages
 - Anti-entropy sessions eventually deliver messages
 - Infect peers with new undelivered messages
Public Key Infection

- Use logical and vector timestamps
 - Determine messages to exchange for anti-entropy
 - Detect message delivery

- Double exponential drop in number of uninected peers with time

- Number of cached messages is in $O(n \log n)$
Simulation

- Implemented Byzantine Fault Tolerant Authentication as a C++ library

- Simulation program
 - Make library calls and keeps counters
 - Study effects of
 - Group size
 - Malicious peers
Effects of Group Size

- Constant Cost for trusted peers
- Probationary peers process $O(n^2)$ messages
- Trust graph does not affect the cost
 - Randomized trusted sets from Bi-directional trust
Effects of Malicious Peers

- Rapid increase of messaging cost
 - With group size
 - With proportion of malicious peers
- Byzantine agreement has quadratic messaging cost
Conclusion

- Autonomous authentication without trusted third party
 - Incremental approach to security
 - Suited for low value peer-to-peer systems

- Tolerate malicious peers
 - Suited for applications spanning multiple administrative domains

- Scalable to large peer-to-peer systems

- Eliminate total trust and single point of failure

- Made feasible by using stronger network assumptions
 - Network adversary is not all powerful
Outline

- Introduction
 - Public key authentication
 - Existing models

- Motivation for Peer-to-peer authentication
 - Other solutions

- Byzantine fault tolerant authentication
 - Security model
 - Outline of correctness and performance

- Future work
Future Work

- Enhancement of the model for Ad-hoc networks
 - Lack the network IDs assumed
 - Apply to vehicular computing
 - Does the key belong to the car stalled on GWB?

- Applications
 - Provide key authentication capability to Open-SSH
 - Other peer-to-peer systems
Future Work

- Enhancements to Byzantine fault tolerant authentication mechanism
 - Address denial of service
 - Avoid expensive public key cryptography

- Study hybrid trust models
 - Hierarchical, peer-to-peer, web of trust
Authentication Protocol

[Diagram showing a protocol with nodes A, B, C, D, and E.]

- Encrypted Nonce
- Recover and Sign Nonce
- Unauthenticated public key at peer A
- Challenge response pairs sent by peers
- Public key of A authenticated to B
- Challenge response pairs sent by A
- B identifies the malicious peer D
- If no consensus on authenticity
- Set of peers with honest majority

Authentication in Peer-to-peer Systems